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Aim of SWIM

Traditionally, workshops in the series of SWIM provide a platform for
both theoretical and applied researchers who work on the development,
implementation, and application of interval methods, verified numer-
ics, and other related (set-membership) techniques. Possible areas of
usage can be found in the fields of

• the verified solution of initial value problems for ordinary differ-
ential equations, differential-algebraic system models, and partial
differential equations,

• scientific computing with guaranteed error bounds,

• the design of robust and fault-tolerant control systems,

• the implementation of corresponding software libraries, and

• the usage of the mentioned approaches for a large variety of system
models in areas such as control engineering, data analysis, signal
and image processing

• . . .





Previous Editions of SWIM

The SWIM workshop series was initiated by the French MEA work-
ing group on Set Computation and Interval Techniques of the French
research group on Automatic Control GDR MACS, where the MEA
group especially aimed at promoting interval analysis techniques and
applications to a broader community of researchers. Since 2008, SWIM
has become an annual keystone event for researchers dealing with var-
ious aspects of interval and set-membership methods.

Previous editions of SWIM were held in:

• Manchester, UK in 2017

• Lyon, France in 2016

• Prague, Czech Republic in 2015

• Uppsala, Sweden in 2014

• Brest, France in 2013

• Oldenburg, Germany in 2012

• Bourges, France in 2011

• Nantes, France in 2010

• Lausanne, France in 2009

• Montpellier, France in 2008

In view of the fact that the city of Rostock will celebrate its 800th
anniversary in 2018 and that the University of Rostock (founded in
1419) can look back to an almost 600-year time span of tradition and
innovation, we cordially invite you to participate in our workshop with
the following interesting contributions.
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Keywords: Hybrid Systems, Reachability, Optimization

Problem Statement

In this talk, we will consider the problem of determining optimal
switching instants for the control of hybrid systems under reachability
constraints. First, we define an n-mode dynamical system

(Si) {ẋ = fi(x) , x(ti) = xi}

in the time interval [ti, ti+1] with fi : Rm → Rm where xi ∈ Rm is the
initial condition for all modes 0 6 i 6 n − 1. Apart from x0 that is
fixed, xi is taken as the solution at time ti of the previous dynamical
system (Si−1). This sequence of dynamical systems corresponds to
the switching of control law. Our problem can be modeled using the
following optimization problem

maxt1,...,tn−1 g(x(τ)) (cost function)
s. t. ∀0 6 i 6 n− 1, (Si) (dynamical constraint)

h(x(τ)) > 0 (reachability constraint)
τ ∈ [tn−1, tn]

 (1)

with the decision variables t1, . . . , tn−1 ∈ Rn
+ the search space for the

different times; g : Rm → R the cost function on the state variable at
given time τ ∈ [tn−1, tn], some constraints defined by the dynamical
systems (Si) and the times ti; a reachability constraint using h : Rm →
R.
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Approach

The optimization problem (1) is cast into a global optimization prob-
lem with differential constraints, where validated simulation techniques
[1] and dynamic time meshing are used for its solution.

Example of the Goddard’s Rocket

The Goddard problem [2] models the ascent of a rocket through the
atmosphere. The rocket has to reach a given altitude while consuming
the smallest amount of fuel. Physically, the optimal solution is a bang-
singular arc-bang controller following the steps: 1) full power to break
out 2) an increasing function to compensate for the drag effect and
3) turn off the engine and continue with the impulse. The question is
when to switch from one dynamics to the following one.

Our approach provides the controller given in figures below, results
agreed with [3] such as t1 = 0.019, t2 = 0.063 for a mass m = 0.6273.

Mesh for t2 w.r.t. t1 Optimal controller

References

[1] J. Alexandre dit Sandretto, and A. Chapoutot, Validated Explicit and
Implicit Runge-Kutta Methods, Reliable Computing, 2016.

[2] R.H. Goddard, A Method of Reaching Extreme Altitudes, Smithsonian Mis-
cellaneous Collections, 1919.

[3] K. Graichen and N. Petit, Solving the Goddard problem with thrust and
dynamic pressure constraints using saturation functions, IFAC 2008.
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1 Univ. Orléans, INSA-CVL, PRISME EA 4229, F45072, Orléans, France
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2 CNRS, LAAS, University of Toulouse, 31031 Toulouse, France

{louise,cjaubert}@laas.fr

Keywords: Hybrid Systems, Estimation, Reachability, Identifiability

Introduction

State estimation is a key engineering problem when addressing con-
trol or diagnosis issues for complex dynamical systems. The issue is
still challenging when the latter systems need to be modelled as hy-
brid discrete-continuous dynamics, which is true for many complex
and safety-critical systems. In this talk, we will review our latest re-
sults regarding nonlinear hybrid state estimation in a bounded-error
framework using reliable and robust methods [1].

Main Results

Hybrid state estimation aims at reconstructing both the discrete mode,
hence the switching sequence, and the associated continuous state
variables, based on a set of possibly discrete-time measurements, the
knowledge of the hybrid model, and assumptions about the uncertain-
ties and perturbations acting on the system.

We first establish a testable condition for current mode location dis-
cernibility. If the hybrid system’s active operation mode was known,
the estimation of the continuous component of the hybrid system would
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merely make use of the existing set membership estimation (SME) al-
gorithms for continuous systems. Therefore, the main ingredient of our
SME for hybrid systems is the ability to distinguish the currently ac-
tive location mode from the observation of the input-output behaviour.
To the best of our knowledge, the observability and detectability of hy-
brid systems have been studied only for linear switching systems (see
[1] and the references therein). In [1], we introduced a new computable
condition for analyzing mode discernibility for the general class of non-
linear hybrid systems. We say that two location modes are discernible
if there exists a control making it possible to distinguish them by their
outputs. In the case of autonomous systems, the output trajectories
must differ at some point in time. Then, using a one-parameter-tuned
composite continuous model, we show that the identifiability of the
tuning parameter implies current mode discernibility.

In a second stage, we build our hybrid state estimator which relies
on a prediction-correction approach. For the prediction step, we use
the hybrid reachability method developed in [2], which combines in-
terval Taylor methods and zonotope enclosures to bound the solution
set of an IVP ODE. The correction step relies on the algorithm of [3]
to compute the intersection between a zonotope and a strip.

An example inspired from vehicle suspension systems is presented.

References

[1] N. Ramdani, L. Travé-Massuyès and C. Jauberthie, Mode
discernibility and bounded-error state estimation for nonlinear hy-
brid systems, Automatica 91, 118–125, 2018.

[2] M. Mäıga, N. Ramdani, L. Travé-Massuyès and C. Com-
bastel, A Comprehensive Method for Reachability Analysis of
Uncertain Nonlinear Hybrid Systems, IEEE Transactions on Au-
tomatic Control 61, 2341–2356, 2016.

[3] T. Alamo, J. Bravo and E. Camacho, Guaranteed state es-
timation by zonotopes, Automatica 41, 1035–1043, 2005.
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Interval Estimation for Continuous-Time
LPV Switched Systems

Chaima Zammali, Jérémy Van Gorp and Tarek Räıssi

Conservatoire National des Arts et Metiers (CNAM), Cedric - Lab, 292 Rue

Saint-Martin, 75141 Paris Cedex 03, France

Keywords: Interval Observer, Continuous-Time LPV Switched Sys-
tems, Cooperative Dynamics, Polytopic Parameter Dependence

Abstract

The theme of diagnosis of industrial systems is a major technological
challenge. In order to take into account this reality, the synthesis of
fault prevention, detection and localization techniques must be high-
lighted. Mainly in the automotive, metallurgy and aerospace indus-
tries, among the most encountered systems, we found the hybrid one.
In this paper, we are interested in the class of switching systems which
is the most important class of hybrid systems. These systems involve
both continuous and discrete dynamics. They consist of a finite num-
ber of continuous dynamical subsystems combined with a discrete rule
that operates switching between these subsystems [1]. In the last two
decades, this class of systems has been widely studied in the frame
of stability, stabilization, observation and diagnosis problems. In or-
der to design a stabilizing control law or a diagnosis procedure, many
existing works consider that the evolution of the system state can be
known or measured. However, the increasing complexities of indus-
trial systems lead to study more complex nonlinear systems where the
state cannot be directly measured [2]. This problem is widespread.
Usually, for nonlinear systems, state estimation methods are based
on an approximate linearization which can lead to an unprecedented
level of obstruction in practice. Accordingly, a broad class of nonlin-
ear systems can be represented in an LPV form [3]. In the literature,
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several approaches of state estimation based on interval methods for
LPV systems provide good results even when the system is affected
by disturbances and/or uncertainties. For an LPV switched system,
interval observers can be designed to estimate lower and upper bounds
of continuous states at each time instant [4], when the uncertainties
and disturbances are assumed to be unknown but bounded with known
bounds [5]. Our contribution deals with the interval state estimation
for LPV switched systems with measured polytopic parameter depen-
dence when the switching signal is assumed to be known. Considering
that the measurement noise and the state disturbance are unknown
but bounded, and that the dynamics of the system is described by a
convex combination, lower and upper bounds of the state are therefore
determined. An interval observer is designed to guarantee both stabil-
ity and cooperativity of the observation errors. The efficiency of the
proposed interval observer is highlighted through simulation results.

References

[1] D. Liberzon, Switching in systems and control, Springer Science
& Business Media 57(1), 3–8, 2012.

[2] T. Räıssi, D. Efimov, and A. Zolghadri, Interval state es-
timation for a class of nonlinear systems, IEEE Transactions on
Automatic Control 57(1), 260–265, 2012.

[3] D. Efimov, T. Räıssi, and A. Zolghadri, Control of nonlin-
ear and LPV systems: interval observer-based framework, IEEE
Transactions on Automatic Control, 58, 773–778, 2013.

[4] H. Ethebat, T. Räıssi, M. Amairi, and M. Aoun, Inter-
val observers design for continuous-time linear switched systems,
IFAC-PapersOnLine, 50(1), 6259–6264, 2017.

[5] Y. Wang, D. Bevly, and R. Rajamani, Interval observer de-
sign for LPV systems with parametric uncertainty, Automatica,
60, 79–85, 2015.
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1 Technische Universität Dresden, Institute of Control Theory, D-01062 Dresden,
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Introduction

The design problem of static state feedback of LTI systems has been
solved decades ago. In combination with a state observer one obtains
a dynamic output feedback control law. Contrary to that, the design
problem of static output feedback is significantly more challenging,
especially if prescribed eigenvalue requirements are considered [1, 2].

Eigenvalue Placement

We consider the state-space system

ẋ = Ax+Bu, y = Cx, u = Ky (1)

with the state x, the input u, the output y and the matrices A ∈ Rn×n,
B ∈ Rn×m and C ∈ Rr×n. The system is controlled by a static output
feedback controller with the gain matrix K ∈ Rm×r. The closed-loop
characteristic polynomial has the form

CP(s) = det (sI − (A+BKC)) = a0 + a1s+ · · ·+ an−1s
n−1 + sn,

11



where the coefficients depend on the entries kij of the matrix K. The
gain matrix K should be computed such that the closed-loop system
has a prescribed characteristic polynomial

CP∗(s) = (s− s1) · · · (s− sn) = a∗0 + a∗1s+ · · ·+ a∗n−1s
n−1 + sn.

The existence of an appropriate gain matrix K can be stated as

∃k11 · · · ∃kmr : a0 = a∗0 ∧ . . . ∧ an−1 = a∗n−1. (2)

In a similar manner, the stabilizability of system (1) can be verified
using inequality constraints on the coefficients a0, . . . , an−1 resulting
from classical stability criteria such as Routh, Hurwitz, or Liénard-
Chipart [3, 4, 5]. For example, if the state-space of system (1) has
dimension n = 3, the stabilizability by static output feedback is stated
as

∃k11 · · · ∃kmr : a0 > 0 ∧ a2 > 0 ∧ a1a2 − a0 > 0. (3)

A stable system can still have a complex conjugate pair of eigenvalues.
In the time domain, such an eigenvalue configuration corresponds to
declining oscillations. To avoid these oscillation, one could demand a
purely real stable eigenvalue configuration. The stabilizability by real
eigenvalues can be formulated as

∃s1 · · · ∃sn∃k11 · · · ∃kmr : s1 < 0 ∧ · · · ∧ sn < 0∧
a0 = a∗0 ∧ . . . ∧ an−1 = a∗n−1

(4)

corresponding to a placement into the interval s1, . . . , sn ∈ (−∞, 0).

Quantifier Elimination

The expressions (2) to (4) contain quantifiers (∃). These formulas can
be transformed into quantifier-free equivalents using quantifier elimi-
nation methods [6]. To illustrate the concept we consider the question,
under which conditions on the parameters a quadratic equation has at
least one real root. This problem can be formulated as

∃x : x2 + px+ q = 0

12



with the quantified variable x and the free variables p, q (parameters).
Quantifier elimination yields the equivalent quantifier-free expression

p2 − 4q ≥ 0.

There are several open source as well as commercial software packages
for quantifier elimination available [7, 8].

This contribution deals with the static output feedback problem
using quantifier elimination. The stabilization problem has been dis-
cussed in [3, 9]. We consider the eigenvalue placement into open, half-
open and closed intervals [10]. Our approach is illustrated on some
example systems.

Acknowledgement

R. Voßwinkel gratefully acknowledges the financial support of this work
by the German Academic Scholarship Foundation.

References

[1] J. Rosenthal and J. Willems. Open problems in the area of
pole placement. In Vincent D. Blondel, Eduardo D. Sontag,
M. Vidyasagar, and Jan C. Willems, editors, Open Problems
in Mathematical Systems and Control Theory, Communication
and Control Engineering Series, pages 181–191, London, 1999.
Springer–Verlag.

[2] M. Franke. Eigenvalue assignment by static output feedback –
on a new solvability condition and the computation of low gain
feedback matrices. Int. J. Control, 87(1):64–75, 2014.

[3] B. Anderson, N. Bose, and E. Jury. Output feedback stabilization
and related problems-solution via decision methods. IEEE Trans.
on Automatic Control, 20(1):53–66, February 1975.

13



[4] C. T. Abdallah, P. Dorato, R. Liska, S. Steinberg, and W. Yang.
Applications of quantifier elimination theory to control theory.
Technical Report, University of New Mexico, September 1995.

[5] P. Dorato. Quantified multivariable polynomial inequalities – The
mathematics of practical control design problems. IEEE Control
Systems Magazine, 20(5), October 2000.

[6] A. Tarski. A Decision Method for a Elementary Algebra and Ge-
ometry. Project rand. Rand Corporation, 1948.

[7] A. Dolzmann and T. Sturm. Redlog: Computer algebra meets
computer logic. ACM SIGSAM Bulletin, 31(2):2–9, 1997.

[8] H. Iwane, H. Yanami, and H. Anai. SyNRAC: A toolbox for solving
real algebraic constraints. In H. Hong and C. Yap, editors, Math-
ematical Software – ICMS 2014, volume 8592 of Lecture Notes
in Computer Science, pages 518–522, Berlin, Heidelberg, 2014.
Springer-Verlag.

[9] V. L. Syrmos, C. T. Abdallah, P. Dorato, and K. Grigoriadis.
Static output feedback — A survey. Automatica, 33(2):125–137,
1997.
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Introduction

The dynamical behaviour of physical or industrial systems is usu-
ally described by complex mathematical models, which include several
types of non-linearity and stiffness. However, almost all non-linear
control design methods are based on simplified models, which satisfy
some mathematical assumptions. Therefore, in practice, there exists
a gap between the thorough modelling of the actual system and the
simplified modelling used to design control laws. As a consequence, the
expected performance of the control law can no longer be guaranteed if
used with the actual system without further investigation. In this talk
we will discuss the potential of our recent contribution in the field [1].

Main Results

This work focuses on the design of reliably stabilizing controllers for
complex non-linear systems.

For a given bounded domain of initial state vectors and a given
parametric feedback control structure derived from a simplified model,
the control parameters are tuned such that the complex system reaches
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a specified target set in a finite-time. Moreover, under the identified
control law the non-linear system must be locally asymptotically stable
over the target set. Note that the finite-time reachability specification
is equivalent to the desired settling time performance for feedback sys-
tems and the width of the target set can be considered as the required
steady-state error performance specification.

A set membership (SM) algorithm is developed in order to char-
acterize, in a rigorous way, the feasible set of the control parameters.
Interestingly, this SM algorithm can also be used to validate or cer-
tify a given stabilizing controller designed from a nominal model of a
complex non-linear system.

First, the control design problem is reformulated as a parame-
ter identification issue in an unknown-but-bounded error framework.
Then, a new dual set integration method for reachability computation
is introduced; it combines an interval Taylor method for solving an
IVP for a set of ODEs and a bounding method for order-preserving
monotone systems. Finally, the latter dual method is used in con-
junction with set inversion techniques via interval analysis, in order
to develop a SM parameter estimation algorithm to solve the control
design problem.

The identified feedback control must achieve two aims. The first
aim is that, starting from a given bounded set of initial states, the
state trajectories generated by the controlled non-linear system have
to reach in a finite-time a desired target set. The second aim is to
ensure asymptotic stability of the controlled system over the target
set. The effectiveness of the proposed method is illustrated through a
complex non-linear system.

References

[1] N. Meslem and N. Ramdani, Reliable stabilizing controller
based on set-value parameter synthesis, IMA Journal of Mathe-
matical Control and Information 34, 159–178, 2017.

16



Guaranteed SLAM – practical
considerations

Eduard Codres, Mohamed Mustafa, Mario Martinez
Guerrero, Alexandru Stancu

The University of Manchester, Faculty of Engineering and Physical Sciences,
Oxford Road, Manchester, United Kingdom

{eduard.codres, mohamed.mustafa, mario.martinezguerrero,

alexandru.stancu}@manchester.ac.uk

Keywords: Mobile Robots, SLAM, Interval Methods

Abstract

Mobile robots have constantly been developing and gaining capabili-
ties during the past few decades, yet some of the most important re-
quirements, such as localisation and mapping, are still under research.
Building a reliable map of the environment is a critical task. Firstly
because the mobile robot needs to have safe navigation in unknown
environments; and secondly because in many cases an accurate map is
needed for future use when the environment is unknown.

Many authors propose interval SLAM (Simultaneous Localisation
and Mapping) for solving the drawbacks of the probabilistic methods
(they need specific noise distributions, model linearisation, they are
not guaranteed etc.). Most of the interval approaches try to deal with
model nonlinearities or sensor noise in a guaranteed way: SLAM for
an underwater robot with sonar [1], range only SLAM [2], SLAM using
Kinect sensor with point features [3]. The convergence of the map for
a guaranteed SLAM approach is proven in [4].

One of the biggest drawbacks when using interval methods is that,
in many cases, they can be pessimistic. A solution for dealing with
this drawback is to use more data and consequently to add more con-
straints when solving the problem at hand as a CSP (Constraint Sat-
isfaction Problem). Another issue with the existing guaranteed SLAM
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approaches is that they rely on existing methods or algorithms to de-
tect features in the data provided by the sensors. This approach de-
creases the number of constraints to be used for solving the SLAM
CSP which is benneficial for the computation time, but at the same
time it creates a different set of problems because the uncertainty of
the detected features cannot be estimated in a straightforward manner.

To adress the drawbacks presented above, a SLAM method which
takes into account all sensor measurements and generates a CSP is
proposed. A non-holonomic robot with a 2D LiDAR sensor is used to
test the proposed method. In this approach two main difficult problems
have to be adressed:

• The data asocciation problem has to be solved for each sensor
measurement in order to be able to contact the CSP;

• Computation time has to be small enough such that the CSP is
solved in real time.
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Introduction

Many algorithms in nonlinear control require the computation of deriva-
tives like Jacobians, Hessians or certain Lie derivatives [1]. Especially
for complex systems, the symbolic computation can result in a time
and memory consuming task as the derivative order increases. This
effect may be avoided when algorithmic differentiation is used instead
of the symbolic computation of derivatives.

Algorithmic Differentiation

The method of algorithmic differentiation is applicable to functions
given as algorithms. As for symbolic differentiation such a function
will be separated by the compiler into its elementary subexpressions
for which the corresponding differentiation rules are applied. The main
difference to the symbolic computation is that these subexpressions
as well as their derivatives are evaluated numerically and passed on
as floating point numbers instead of symbolic expressions. Thus, an
exponential increase in computing time and memory consumption is
prevented.

The open source algorithmic differentiation toolbox ADOL-C [2] is
designed for the computation of first and higher order derivatives of
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vector functions that predestines it for tasks in control engineering. It
is written in C/C++ and can be easily connected to MATLAB using
so called MEX functions.

Functionality of the Interface

Functions that are going to be used for differentiation operations first
are passed to an automated procedure to build a MEX function, which,
when executed, generates so called tapes. This is a special data set
containing all necessary information of a considered function which
then ADOL-C uses for derivative computation later.

Furthermore, the interface provides a series of ready to use MEX
functions accessing the tapes for their operations, e.g., to get the gra-
dient, Jacobian or Hessian of a function or various Lie derivatives
along vector fields. Part of this functions are MATLAB MEX wrap-
pers around the corresponding ADOL-C functions. Beside this basic
functionality there is also a more sophisticated and control engineering
related part. This contains the direct computation of gains for con-
trollers as the exact input-output linearization or observers such as the
extended Luenberger observer.

The structure of the interface also allows an easy extension by user
defined functions. In fact, the interface itself is not constrained to
MATLAB but may also be used by the open source tool Octave.
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Introduction

This is about linkage mechanisms, built from rigid bodies, springs etc.,
connected by joints of various kinds. For simulation, a Lagrangian ap-
proach to such systems is popular because of its economy and flexibility.

The economy is because by d’Alembert’s principle a Lagrangian
function L, in contrast to direct use of Newton’s laws, can omit mention
of forces that do no work. E.g., for L not to mention the string tensions
either side of a pulley amounts to declaring the pulley is frictionless.

The flexibility is because the system can be described in any vector
q of “generalised coordinates” that specify its position.

If q is such that constraint equations are involved (say, a 2D simple
pendulum in terms of x, y coordinates) the resulting Euler–Lagrange
equations of motion form an index-3 differential-algebraic equation
(DAE) system. If not (say, the pendulum in terms of its angle with
the vertical), they reduce to an ODE. Since DAEs are thought difficult,
much work has gone into ways of describing a system by coordinates,
usually angles, that give an ODE.

However our C++ DAE solver Daets has no problem with the
index-3 form. Our first contribution is a “Lagrangian facility” that
converts code for L, whether constrained or not, direct to the equations
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of motion, in a form Daets then solves. Daets’s builtin automatic
differentiation (AD) package FADBAD++ does the relevant ∂/∂qi, ∂/∂q̇i
and d/dt at run time—no computer algebra manipulation involved.

Next, we have shown a systematic way to model dynamics of a rigid
body (in any number n of dimensions) in terms of cartesian coordinates
of n “reference points” rj on it. The key computational tool is QR-
factorisation. Hence a mechanism can be given a q made of suitable
rj on the moving parts (plus, a torque needs an associated turn angle,
to model it as a conservative force). The constraints define how it is
jointed. This usually gives a simple, readable cartesian Lagrangian.

Our second contribution is to build a “mechanism facility” that
reads a formalised text description of a mechanism and converts this
(again at run time) to a cartesian L that the Lagrangian facility then
solves. The description is written in YAML, a Python-style data se-
rialisation language. At present the facility is restricted to a class of
mechanisms in 2D: parts can be rigid bodies, particles or springs, acted
on by constant forces or torques, or gravity; joints are pin-joints or lin-
ear sliding constraints. Widening this class, and extending to 3D, is a
matter of detail and not of concept.

I aim to show how for small mechanisms one can go from a problem
description in a text editor, to a Matlab animation, in a few seconds.
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Introduction

Reproducibility is an important topic in the field of high-performance
computing. Reproducibility means that a bitwise identical floating-
point result is always obtained for the same inputs in different com-
putational environments. We propose reproducible algorithms that
produce accurate numerical results for matrix multiplication based on
a previous study [1,2].

Error-Free Transformation and Main Results

Let F be a set of floating-point numbers, as defined by IEEE 754 [3].
The notation fl(·) indicates a computed result, i.e., all operations in
the parenthesis are evaluated via floating-point arithmetic. For A ∈
Fm×n and B ∈ Fn×p, we aim to obtain an accurate numerical result for
the matrix product AB. As given in a previous study [1], we divide A
and B into an unevaluated sum of k floating-point matrices, such that

A = A(1) + · · ·+ A(k−1) + A(k), A(i), A(k) ∈ Fm×n,
B = B(1) + · · ·+B(k−1) +B(k), B(i), B(k) ∈ Fn×p,
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where 1 ≤ i ≤ k− 1. Then, we compute AB using the following form:

AB =
∑
i+j≤k

A(i)B(j) +
k−1∑
i=1

A(i)B(k−i+1) + A(k)B. (1)

In (1), fl(A(i)B(j)) = A(i)B(j) is satisfied for i+ j ≤ k. The computed
result fl(A(i)B(j)) does not depend on the computational environment.
Therefore, if we compute AB as

AB ≈
∑
i+j≤k

fl(A(i)B(j)) (2)

and if the sum in (2) is computed in a particular order, we obtain a
bitwise identical result in any computational environments. However, if
we evaluate (1) via floating-point arithmetic, the computational results
will depend on the order of evaluation, because in many cases

fl(A(i)B(k−i+1)) 6= A(i)B(k−i+1), fl(A(k)B) 6= A(k)B, 1 ≤ i ≤ k − 1.

We propose a method that provides a reproducible result on MATLAB,
Scilab and Octave based on (1) through the suitable application of
blockwise matrix multiplication under several assumptions. Finally, we
introduce reproducible algorithms for interval matrix multiplication.
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Introduction

Intervals and interval computation owe much to the seminal work of
Sunaga [1] who defined intervals and interval arithmetic as a result of
an Interval Algebra. As discussed in [2], the set of real intervals IR∗
with the operations Min,Max is a distributive lattice with a number
of interesting algebraic properties. In this paper, we are interested
in endowing this lattice of intervals with a median structure thus ob-
taining a median algebra. We show how this algebra is defined, its
properties, its compatibility with the interval arithmetic and how in-
tervals (proper, improper and modal) are treated in this framework.
Finally, we discuss some theoretical issues as well as some potential
applications.

Background and Hypotheses

Since the early times of interval computation [1], the concept of inter-
val and related arithmetic gave rise to the elaboration of a significant
number of theoretical and computational concepts and tools under the
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title of interval analysis as well as important developments in various
scientific and engineering fields. Hence, the initial interval concepts
were gradually enriched with the concepts of improper intervals and
the related Kaucher arithmetic as well as modal intervals together with
related operations. In addition to the above, one should mention set-
membership approaches which adopted an interval based view of sets
by means of unions of axis aligned boxes. This view, which can be
significantly represented by SIVIA [3] and its ramifications, resulted in
important research and development work in the area of control sys-
tems and their applications. Among all the important foundational
approaches it seems that the work of Sunaga [1] was the first that
introduced an algebraic structure for the intervals and yet proved its
contribution to the definition of interval arithmetic operations and to
the perspective of using intervals in numerical analysis.

In algebra the concept of median structure and the resulting me-
dian algebra constitutes a well established algebraic construct with
constantly increasing appeal from both theoretic and practical points
of view of algebraic notions [4,5]. A median algebra is a ternary alge-
braic structure consisting of a set M together with a ternary operation
(α, β, γ) 7→ (αβγ) on M such that the following axioms hold:

- (ααβ) = α (Idempotency)

- (αβγ) = (βαγ) = (αγβ) (Symmetry)

- (αβ(γδε)) = ((αβγ)δ(αβε)) (Distributivity)

If M is a distributive lattice (M,∨,∧) one can define a ternary opera-
tion m : M 3 →M such that for α, β, γ ∈M

m(α, β, γ) = (α ∨ β) ∧ (α ∨ γ) ∧ (β ∨ γ),

where the symbols ∧ and ∨ denote the join and meet operations of the
lattice M . This operation is referred as the median ternary operation
in M and satisfies the axioms above. Moreover, this ternary operation
is self dual in the sense that

(α ∨ β) ∧ (α ∨ γ) ∧ (β ∨ γ) = (α ∧ β) ∨ (α ∧ γ) ∨ (β ∧ γ).
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Since every chain is a distributive lattice, so are the real numbers
and therefore R is a median algebra. Median structures have been
successfully applied in various areas of interest such as metric spaces
giving rise to median spaces and measured wall spaces, consensus the-
ory, taxonomy, majority decision making, median graphs and trees
which often occur as almost-natural representations of structured data
in various applications of machine learning, etc.

Main Results

In this paper, we show how the set of real intervals IR becomes a me-
dian algebra and so does its extension IR∗ of modal intervals. Using
some of the foundational concepts defined in [1] and extensions pre-
sented in [2] we show that the median structure of the set of intervals
is an algebraic framework supporting the representation of proper, im-
proper and modal intervals. Moreover, we show how arithmetic, con-
tainment and relational operations between intervals are formulated in
this context without contradicting the initial definitions. Finally, we
discuss some theoretical issues and potential applications.
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Introduction

An important area in control theory remains the optimization of dy-
namic systems. To model vibrations effectively in flexible structures,
generalized variational formulations of PDE control problems were pro-
posed by using the method of integro-differential relations (MIDR) [1].
The comparison of an approximate system and the original model
with distributed parameters can be performed explicitly following the
MIDR. This approach allows us to estimate the quality of finite-dimen-
sional modelling for refining or coarsening the obtained approximations
and, if necessary, to correct the related control law.

The corresponding procedures for solving optimal control problems
in linear elasticity based on the Ritz method and finite element tech-
nique (FEM) were developed in [2] for uniform elastic rods. The follow-
ing results extend this approach to the case of nonuniform structures.
The novelty of this paper also consists in proving the optimality of some
specific motions for the uniform rod, developing an original FEM solver
for systems with piecewise constant mechanical parameters, and regu-
larizing the control signals with the help of a quadratic cost functional
which includes the discrepancy of constitutive relations.
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Problem Statement and Main Results

A generalized formulation of optimal control problems for longitudinal
motions of an elastic rod is studied. The only control input is a force
applied at one end of the rod. Based on the Ritz method, a finite
element algorithm is developed with piecewise polynomial approxima-
tions in the space-time domain for unknown displacement, momentum,
and force fields. The control strategy aims to depress elastic vibrations
in the rod. This is attained by minimizing both mean and terminal
energies of the structure over a fixed time horizon.

The results of numerical simulations for the case of nonuniform dis-
tribution of mechanical parameters are presented. The verification of
optimal control laws has been performed taking into account the ex-
plicit local and integral error estimates obtained in accordance with the
MIDR. As shown by calculations, the accuracy of approximate solution
can dramatically fall down with control optimization. To regulate the
appearing error, an upper limit for the quadratic functional of consti-
tutive relations, weakened in the considered variational formulation, is
kept by an additional isoperimetric condition.
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We are aiming at non-trivial solutions of the one-dimensional time-

independent Schrödinger-Poisson system

−u′′ + V u+ Φuu = f(u)

−Φ′′u + cΦu = u2

}
on R,

lim
x→±∞

Φu = 0

where c > 0 is an additional parameter needed in the one-dimensional
case, V ∈ L∞(R) is a positive potential and f ∈ C1(R).

This one-dimensional system is a simplified model for the three-
dimensional time-dependent version

−i~∂tψ −
~2

2m
∆ψ + qeWeψ = f(ψ)

−ε∆We = qe|ψ|2

 on [0,∞)× R3

lim
|x|→∞

We = 0

which (for f ≡ 0) plays an important role in today’s semiconductor
technology. ψ represents the wavefunction of a particle, in our case
of an electron, and m is its mass. We describes the electric potential
which depends on the wavefunction ψ by the above Poisson equation
with Dirichlet boundary conditions.
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To prove non-trivial solutions of the one-dimensional Schrödinger-
Poisson system we first “solve” the second equation using the corre-
sponding Green’s function Γ, and insert the result into the first one:

−u′′ +
(
V +

∫ ∞
−∞

Γ(·, t)u(t)2 dt

)
u = f(u) on R.

Furthermore u should be a solution with finite energy level for physical
reasons, i.e. we look for a solution u ∈ H1(R).

Applying computer-assistance to the above equation, we are able
to prove the existence of a non-trivial solution of the one-dimensional
Schrödinger-Poisson system for the case c = 50, constant potential
V ≡ 1, and the nonlinearity f chosen as f(y) = y3 (y ∈ R).

Starting from a numerical approximate solution, we compute a
bound for its defect, and a norm bound for the inverse of the lineariza-
tion at the approximate solution. For the latter, eigenvalue bounds
play a crucial role, especially the eigenvalues “close to” zero. There-
for we use the Rayleigh-Ritz method and a corollary of the Temple-
Lehmann theorem to get enclosures of the eigenvalues of the lineariza-
tion below the essential spectrum.

With these data in hand, we can use a fixed-point argument to ob-
tain the desired existence of a non-trivial solution “nearby” the approx-
imate one. In addition to the pure existence result, the used methods
also provide an enclosure of the exact solution.
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Introduction

In this talk we dive into the subject of dynamical systems and in par-
ticular a dynamical system that mathematically models a natural phe-
nomenon called Chemotaxis.
One research area in which Chemotaxis is heavily involved is cancer
research. In particular, a lot of time and effort are invested in the
understanding of Metastasis (i.e., the final stage of cancer) but to un-
derstand those complicated processes one has to understand the mech-
anism behind them, i.e., Chemotaxis.

The Model

The classical mathematical model for chemosensitive movement is the
Patlak-Keller-Segel model [2, 3], a hyperbolic-parabolic reaction-diffu-
sion system of PDEs which assumes diffusion of the species at hand.
In our approach we consider an alternative system of PDEs derived by
Dolak and Hillen [1] that applies Cattaneo’s law of Heat propa-
gation with finite speed i.e.

ut + qx = F (u)

c1qt + q = −c2ux − V (u, S)Sx (1)

St = c3Sxx +G(u, S)

where subscripts x, t denote the partial derivatives ∂
∂x ,

∂
∂t respectively

and c1, c2, c3 are known constants.
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Aims, Approach, Techniques

Our aim is to rigorously prove existence of special solutions called trav-
eling waves (TW) on an unbounded domain Ω = R with computer
assistance wherever this is needed.
We approach the problem as follows: substituting in (1) the traveling
wave ansatz u(x, t) = w(x−µt) and considering appropriate boundary
conditions we write our problem in the form

F (w, µ) = 0

where F : X = H1(R)4 × R→ L2(R)4 × R = Y, w ∈ H1(R4) is the
TW and µ its speed.

To prove existence of the TW we follow a method proposed by Plum
[4] from an elliptic PDE problem and adapt them to our hyperbolic-
parabolic system. The techniques of this proof involve the
computation of defect bounds, eigenvalue inclusion methods, spectral
bounds and Banach’s Fixed Point theorem analytically and into
interval arithmetics environment.

Acknowledgement

We gratefully acknowledge the support of the German Research Foun-
dation (DFG) by CRC 1173.

References

[1] Y. Dolak, T Hillen, Cattaneo models for chemosensitive movement. Numer-
ical solution and pattern formation, J. Math. Biol., 45, pp. 153–170, 2003.

[2] E.F. Keller, L.A. Segel, Model for Chemotaxis, J. Theor. Biol., 30, pp. 225–
234, 1971.

[3] C.S. Patlak, Random walk with persistence and external bias, Bull. Math.
Bio-phys., 15, pp. 311–338, 1953.

[4] M. Plum, Computer-assisted proofs for semilinear elliptic boundary value prob-
lems, Japan. Indust.. Appl. Math., 26, pp. 419–442, 2009.

34



Reliable Visual Analytics as Part of a
Process Quality Assessment

Wolfram Luther1, Ekaterina Auer2 and Benjamin Weyers3

1 University of Duisburg-Essen, Department of Computer Sciences and Applied
Cognitive Science, D-47048 Duisburg, Germany

luther@inf.uni-due.de
2 Hochschule Wismar, Department of Electrical Engineering

D-23966 Wismar, Germany
ekaterina.auer@hs-wismar.de

3 RWTH Aachen, Department of Virtual Reality and Immersive Visualization
D-52074 Aachen, Germany
weyers@vr.rwth-aachen.de

Keywords: Reliable Visual Analytics, Verification and Validation
Analysis

With the omnipresent advance of computing, the Internet of Things
or cloud based technologies, ambient intelligence and smart environ-
ment software gain more and more importance for supporting mobile
users in all areas of their daily life. Typical challenges along this way
are huge amounts of heterogeneous input and output data and high
system complexity, for dealing with which new visual and collabora-
tive approaches are called for. The emerging area of visual analytics
(VA) offers a solution to these problems, its main strength lying in
the ability to engage in the analytical process the whole of human
perceptual and cognitive capabilities augmented by advanced compu-
tations [1]. VA hardware and software architectures serve to assess
and visualize important system/process parameters, descriptors and
uncertain environment entities. Only few publications explicitly use
the term Reliable Visual Analytics or propose guidelines for assess-
ment of VA frameworks, methodologies, applicability and efficiency.
Several authors focus on device-dependent transformation, accurate
understanding of outcome using reliable mapping algorithms and stan-
dardized procedures to automatically select, analyze, refine and com-
bine visual data. Sometimes accuracy and reliability are explicitly or

35



implicitly addressed in the context of uncertain data acquisition, air-
craft and power plant safety, risk assessment and healthcare monitoring
and management. This means, on the one hand, that human-centered
paradigms become an important feature within a workflow for design-
ing, modeling, and implementing various real life processes [2]. On
the other hand, reliability of VA architectures have to be ensured to
apply them in the context of formal verification and validation (V&V)
assessment. Developing reliable VA frameworks needs guidelines and
recommendations based on real world use cases, benchmarks, lab stud-
ies. Further generic requirements might concern ethical considerations
or interaction and collaboration styles, for example, via virtual real-
ity 3D devices [3]. In this contribution, we assess the strengths and
weaknesses of big data and VA science and technology in the context
of V&V. This includes various collaboration methodologies and mixed
reality platforms where scientists of different disciplines interact with
each other, with data and with information. We discuss the possibil-
ity of a multilayer quality assessment procedure similar to that from
data analytics, bearing in mind the methodologies from the neighbour-
ing fields concerning reliability, accuracy, performance efficiency, group
activity monitoring as well as validation and evaluation. Further topics
include appropriate hardware devices managing, for example, safe data
transfer, and the contributing concepts from cognitive and perceptual
sciences.
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Summary of the Talk

The speaker was introduced to C++ in the early 1990s, by reading the
books by Lippman [1] and Barton & Nackman [2], and has used this
language in several academic and industrial projects since that time.
The programming world has changed considerably in this period, but
he still uses C++ for most of his scientific computations because, as
more recent languages like R, Python and Julia, C++ is also evolv-
ing and is supported by a very active community. Moreover, C++’s
latest versions have several features which are quite useful for inter-
val arithmetic and scientific computing in general, both in terms of
performance and usability.

This talk describes how modern C++ can be used for interval com-
putations, in practical examples. These examples use the Moore library
for interval arithmetic [3], and its extensions for linear algebra, auto-
matic differentiation and Taylor models. We would like to show that
with C++ we can write code for interval computations which is intu-
itive, general and efficient. By “intuitive” we mean code like this:

interval<> x(1,2), y(3,4);

std::cout << x * y + exp(x + cos(y));

and by general we mean code like the next snapshot, in which T could
be, for instance, a floating point number with a mantissa of 1024 bits.

interval<T> x("[1,2/325]"), y("[3/431,4/25]");
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We could also use matrices and vectors efficiently and intuitively.
For instance in the code below we create vectors and matrices with
interval entries (ivectors and imatrices) fill the large ones with ran-
dom intervals (irand) and perform some arithmetic operations.

ivector<3> small_vec{ i(1,2), i(2,3), i(3,4) };

imatrix<2,3> small_mat{ {i(0,1), i(2,3), i(0,2)},

{i(0,1), i(0,2), i(0,2)} };

ivector<> large_vec(250);

imatrix<> large_mat(2,250);

generate(large_vec, irand);

generate(large_mat, irand);

auto prod = small_mat * small_vec + large_mat * large_vec;

Finally, C++ leads to efficient code because template meta pro-
gramming allows us to perform part of the computation at compile
time, and give more optimizing opportunities for the compiler. For in-
stance, the small vector and matrix above are stored on the stack, and
their sizes are known at compile time, whereas the large vector and
matrix are allocated on the heap. The compiler deduces that prod is a
two dimensional vector, which is allocated on the stack, and there is no
heap allocation while evaluating it: the compiler knows that the inter-
mediate results in the computation of prod are small two dimensional
vectors, and their evaluation involves only the stack, using expression
template techniques.
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Abstract

Interval methods can be seen as providing a tool to reason about deter-
ministic systems with imprecise inputs. This views can be justified formally
through the notion of set extension of functions, and the fact that interval
methods “arithmetize” certain types of set computation. A natural ques-
tion to ask is whether similar view is possible when we wish to move from
sets to distributions. A related question is whether we can generalize this
idea for deterministic systems to non-deterministic (set-valued) and prob-
abilistic (distribution valued) systems. This work presents a mathemati-
cal framework for answering these and related questions. The framework
makes extensive use of two notions that have found extensive use in pro-
gramming language semantics, namely, monads and monad transformers.

Keywords: Probabilities, Approximation, Intervals, Monads

Introduction

The design of high confidence systems often relies on the computa-
tion of probabilities that may, for instance, give an upper bound to
the probability of failure. Traditional numerical methods are too error
prone for such applications. In contrast, interval methods can de-
liver safe approximations in the form of an enclosing set (rather than
some near by point) approximations of points. We propose a seman-
tic framework for using such methods for probabilistic models. Such
semantics may provide a reference model to establish correctness of
interval algorithms.
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The proposed framework builds on two key observations, namely,
that (discrete) probability distributions form a monad on sets, and
that the non-empty powerset monad can be turned into a monad trans-
former (unfortunately, this result relies on the axiom of choice). This
transformer allows us to add non-determinism to any monad on sets,
including probability distributions.

The framework thus generalizes the notion of set-extension, which
provides a basis for rigorous interval computation.

Monads

We begin by recalling the definition of the notion of a monad:

Def 1 (Monad, c.f. Moggi [1]). A monad on the category Set of sets
is a triple (M, η, ∗) such that if X:Set then MX:Set, η:X → MX
is a map (from X to MX), if f :X → MY then f ∗:MX → MY .
Furthermore, η and f ∗ must satisfy the following equational axioms
for any f :X →MY and g:Y →MZ

1. η∗X = idMX

2. (g∗ ◦ f)∗ = g∗ ◦ f ∗

3. f ∗ ◦ ηX = f

Trivial examples of monads are the identity MX = X and the
terminal monad MX = 1, where 1 is a singleton set. For this work the
most interesting monads are:

• Exceptions X+E, where + denotes disjoint union (η and f ∗ should
be obvious).

• Powersets (non-determinism) P (X), where P (X) is the set of sub-
sets of X, η(x) = {x} and f ∗(A) =

⋃
x:A f(x); also P+(X), i.e.,

P (X) without the empty set, is a monad.
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• Probability Distributions D(X) = {p:X → [0, 1]|
∑

x:X p(x) = 1},
η(x)(x′) = 1 if x = x′ else 0 and f ∗(p)(y) =

∑
x:X p(x) ∗ f(x)(y).

An equivalent monad is given by the set D′(X) of measures, i.e.,
µ:P (X) → [0, 1] such that µ(X) = 1 and µ(]i:IAi) =

∑
i:I µ(Ai)

for any family (Ai|i:I) of disjoint subsets of X. The correspondence
between D(X) and D′(X) is µ(A) =

∑
x:A p(x) and p(x) = µ({x}).

Other examples can be found in the reference above, subsequent work
in the context of programming languages semantics and in the design of
functional programming languages with IO and computational effects.

Interval for Probability Distributions

The natural order on [0, 1] induces a point-wise order on the func-
tion space X → [0, 1]. This allows to introduce interval notations for
subsets of probability distributions in D(X), for instance

[l, u] = {p:D(X)|∀x.l(x) ≤ p(x) ≤ u(x)}

where l, u:X → [0, 1] (not necessarily in D(X)). Another notation is

[L,U ] = {p:D(X)|∀(A, lA):L.lA ≤ p(A) ∧ ∀(B, uB):U.p(B) ≤ uB}

where L,U :(P (X), [0, 1])∗ are finite sequences and p is extended addi-
tively to subsets of X, namely p(A) =

∑
x:A p(x).

M-Extensions of Functions

The natural set-extension of f :X → Y is the map P (f):P (X)→ P (Y )
such that P (f)(A) = {f(x)|x:A}. This maps satisfies the equation
P (f)({x}) = {f(x)}, which establishes that it is an extension of f .
The notion of extension generalizes to any monad, and hinges on the
fact that a monad is also a functor.

Def 2 (Functor). A functor F on Set maps a set X to a set F (X),
and f :X → Y to F (f):F (X)→ F (Y ) so that
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1. F (idX) = idF (X)

2. F (g ◦ f) = F (g) ◦ F (f)

Def 3 (Natural Transformation). A natural transformation τ from a
functor F to a functor G is a family of maps τX :F (X)→ G(X) indexed
by X:Set such that for any f :X → Y we have τY ◦ F (f) = G(f) ◦ τX.

Prop 1 (M-extension). A monad becomes a functor by defining M(f) =
(ηY ◦f)∗ for f :X → Y , and ηX :X →M(X) becomes a natural transfor-
mation from the identity functor to M , i.e., (Mf)(ηX(x)) = ηY (f(x)).

When M is the powerset monad P , one recovers as a special case
the natural set-extension. For almost every monad on Set the map ηX
is injective, thus one can view X as a subset of M(X) and M(f) as an
extension of f .

Approximating Distributions

We now present an application of the framework above, namely, safely
approximating the distribution-extension of a given function.

More precisely, given an approximation F of a function f :X → Y
and a lower approximation L of a distribution µ:D′(X), we want to
compute an approximation [L′, U ′] of µ′ = D′(f)(µ):D′(Y ).

To define the algorithm that solves this problem we must first
specify the type of approximations involved and the properties that
they must satisfy. Recall that the set-extension of f :X → Y is the
map P (f):P (X) → P (Y ) such that P (f)(A) = {f(x)|x:A}, and that
µ′ = D′(f)(µ) means that µ′(B) = µ(f−1(B)).

Inputs: An approximation F of f , namely a map F :P (X)→ P (Y )
such that ∀A:P (X).P (f)(A) ⊆ F (A).

A lower approximation L = [(Ai, li)|i:n] of µ, i.e., ∀i:n.li ≤ µ(Ai),
with (Ai|i:n) partition of X (thus

∑
i:n li ≤ 1).
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Output: An approximation [L′, U ′] of µ′ = (D′f)(µ), namely two
sequences L′, U ′:(P (Y ) × [0, 1])∗ such that ∀(B′, l′):L′.l′ ≤ µ′(B′) and
∀(B′, u′):U ′.µ′(B′) ≤ u′.

Algorithm: For convenience, we identify a natural number n with
the set {i|i < n} of its predecessors. The algorithm proceeds as follows:

1. For I ⊆ n, let AI = ]i:IAi, lI =
∑

i:I li and uI = 1 − lIc, where
Ic ⊆ n− I is the complement of I.

Note: lI ≤ µ(AI) ≤ uI holds by the assumption on L, in other
words from the lower approximation L we compute its completion
[Lσ, Uσ], where Lσ = [(AI , lI)|I ⊆ n] and Uσ = [(AI , uI)|I ⊆ n],
which approximates the same probability distributions, but more
explicitly.

2. Let BI = F (AI).

Note: Since f(AI) ⊆ F (AI) = BI we have AI ⊆ f−1(BI). Thus,
lI ≤ µ′(BI). Furthermore, µ′(Bc

I) ≤ uIc, as f−1(Bc
I) = (f−1(BI))

c ⊆
Ac
I = AIc.

3. L′ = [(BI , lI)|I ⊆ n] and U ′ = [(Bc
I , uIc)|I ⊆ n].

Monad Transformers

Functors compose, while monads may not. More precisely, if M and
M ′ are monads, then M ′ ◦M is a functor, η′MX ◦ ηX :X → M ′(MX)
is a natural transformation, but there is no canonical way to define f ∗

for f :X →M ′(MY ).

Prop 2. If M is a monad, then M(+E) and P+(M()) are monads.

Hint Given F :X → P+(MY ), let Πx:X.F (x) be the set of choice
maps f st ∀x:X.f(x):F (x), then F ∗(A) = {f ∗(c)|c:A∧ f :Πx:X.F (x)}.
Proving that F ∗ satisfies the axioms for monads, use crucially the
axiom of choice.
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Monad morphisms are a way to relate two monads, more precisely
they relate monads in the same way as natural transformations relate
functors, thus one can define a category of monads on Set. Since
monads may not compose, monad transformers are a way to build
incrementally complex monads from simpler ones.

Def 4 (Monad Morphism). A monad morphism is a natural transfor-
mation σ from a monad M to a monad M ′ such that :

η′X(x) = σX(ηX(x)) (σY ◦ f)∗
′
(σX(c)) = σY (f ∗(c))

We write Mon for the category of monads and monad morphisms.

Def 5 (Monad Transformer). A monad transformer consists of a func-
tor T on Mon and a natural transformation ηTM :M → T (M) from the
identity functor on Mon to T .

Unlike monads, monad transformers can be composed. Prop 2 can
be turned into two examples of monad transformers:

• Let ιX :X → X + E and ι′X :E → X + E the obvious inclusion
maps, the monad transformer T adding exceptions is given by
(TM)(X) = M ′X, where M ′ is the monad M ′X = M(X + E),
η′X = ηX+E◦ιX , if f :X →M ′Y then f ∗

′
= g∗ with g:X+E →M ′Y

such that g(ι(x)) = f(x) and g(ι′(e)) = ηY+E(ι′(e)).

If σ:M → M ′ is a monad morphism then (Tσ)X = σX+E, and
ηTM :M →M ′ is the monad morphism such that ηTM,X = M(ιX).

• The monad transformer T adding non-determinism is given by
(TM)(X) = M ′X, where M ′ is the monad M ′X = P+(MX),
η′X(x) = {ηX(x)}, if F :X → M ′Y then F ∗

′
(A) = {f ∗(c)|c:A ∧

f :Πx:X.F (x)}.
If σ:M → M ′ is a monad morphism then (Tσ)X = P+(σX), and
ηTM :M →M ′ is the monad morphism such that ηTM,X(c) = {c}.

Other examples of monad transformers are (TM)(X) = (MX)S and
(TM)(X) = M(X×S)S, the latter is not given by functor composition.
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Related Work

Weichselberger [2] (Def 2.2) introduces R-probabilities, namely a pair
of maps L and U from a σ-algebra (called σ-field in [2]) A on a sam-
ple space Ω, which bound the probability distributions on Ω, namely
∀A:A.L(A) ≤ p(A) ≤ U(A). In this paper we work in a simplified set-
ting, i.e.: the space Ω is a set X, the σ-algebra A is the powerset P (X),
L and U are finite sequences L = [(Ai, li)|i:m] and U = [(Bj, uj)|j:n]
representing maps L′, U ′:P (X) → [0, 1], namely L′(A) = li when
A = Ai otherwise 0, and U ′(B) = uj when B = Bj otherwise 1. An al-
gorithm should manipulate the finite list L and U , while its correctness
should be expressed in terms of the maps L′ and U ′.

We have not gone beyond probability distributions on sets. For
distributions on spaces, the approach taken in [5] would be useful.

Future Work

In this work we have focused on extensions of functions. In general, we
may wish to extend systems that are richer than simply functions. A
transition system (TS) is a pair (S,R) with R a binary relation on the
set S. There is a bijection between R:P (S2) and t:S → P (S). This
suggests a generalization of TS by replacing P with a monad M .

Def 6 (Monadic Transition System). Given a monad M on Set, an
M-TS is a map t:S →M(S), and moreover the map t allows to define
the following auxiliary maps

• T :Π → (MS → MS), where T0(c) = c and Tn+1(c) = t∗(Tn(c)),
gives the configuration reached in n steps when starting from c;

• T ′:Πn:N.MS →M(Sn+1) gives the traces of length n starting in c,
namely T ′0(c) = c and T ′n+1(c) = f ∗(T ′n(c)), with f = (l, s):Sn+1 7→
g∗l,s(t(s)):M(Sn+2) and gl,s = s′:S 7→ η(l, s, s′):M(Sn+2).

Relevant examples of M -TS for a monad M are

• probabilistic TS, with M the probability distributions monad D
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• probabilistic and non-deterministic TS with trap states, with M
the monad P+(D(+E)), where E is the set of trap states.

A further generalization of transition systems is a map t:S → B(S)
with B a functor, in this case t is called a co-algebra for B (c.f. Turi
Plotkin [4]). A co-algebra for B(X) = P (A × X) corresponds to a
label transition system (with labels in A), this B is a functor, but not
a monad. However, the definition of the auxiliary maps T and T ′ rely
crucially of having a monad.
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Introduction

In every branch of science and engineering, the ability to process large
volumes of data has become essential. Over the past century, statistics
has focused on developing methods for the analysis of datasets with
limited sample size. But not all uncertainty in data has to do with
small sample sizes.

Imprecise Data

Regardless of the instrument quality each individual datum has always
a finite representation. Substituting single measurements with real
numbers can be a strong assumption.

Large datasets are often manipulated to produce descriptive statis-
tics, such as mean, median, variance, etc. as well as inferential statis-
tics like regression, classification, outliers detection, etc.

When the data set has imprecision, computing statistics can be
challenging. For example, for data in the form of intervals, using näıve
interval analysis yields results with inflated uncertainty because of the
repeating variables problem. Finding optimal bounds on many statis-
tics is an NP-hard problem that complicates with the size of the data
set. It is practically impossible to solve these problems for large data
sets with simple space-filling strategies, in which, for instance, the for-
mula for the variance is treated like a black box evaluated for many
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possible configurations of the data points within their respective inter-
vals.

Interval Statistics

In general, computing statistics on interval data sets is at most NP-
hard. For example, solving for the lower bound on the variance could
be achieved using a quadratic programming algorithm, as the problem
can be expressed in the form of a bounded quadratic optimisation,
where the decision variables are represented by the data and therefore
the constraints are given by the bounds on the interval data. Quadratic
programming problems can be solved in polynomial time when linearly
constrained and in linear time when not constrained at all, while they
are NP-hard in the general case. When the matrix of coefficients of the
quadratic function – obtained from the variance arithmetic formula –
is positive definite, the lower bound of the variance can be obtained
in polynomial time. Sadly, the same is not true for the upper bound,
which relates to a concave problem.
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Introduction

Magnetic resonance imaging (MRI) is commonly associated with medi-
cal examinations. It provides a three-dimensional insight into complex
structures without requiring optical or physical access. In the past
decade, MRI has found increasing application in the field of fluid me-
chanics (Elkins & Alley 2007). MRI has been used to acquire various
flow properties, such as velocity and species concentration in techni-
cal fluid systems. In these laboratory experiments, MRI can produce
exceptionally high signal-to-noise ratios, high resolution and sharp con-
trasts compared to medical imaging.

As for any other measurement technique, it is essential to estimate
the statistical uncertainty of the results. In velocity-sensitive MRI, the
uncertainty of the velocity data can be estimated from the distribution
of the complex values in the image (Bruschewski et al. 2016). The
image is obtained via Fourier Transform from the received signal which
is corrupted by thermal noise of the receiver chain and external sources
of noise.

In addition to uncertainty estimation, quantitative flow imaging
with MRI requires knowledge on all systematic measurement errors
that can corrupt the data. In routine flow measurements it is often ob-
served that the fluid velocity leads to errors in the measured geometry.
Because the encoding process in common MRI techniques is not in-
stantaneous, the spatial coordinates are encoded at different times. As
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a result, the reconstructed signal of the fluid flow appears at locations
that the fluid particles have never physically occupied. An example of
this effect is shown in Fig. 1.

The presentation at the meeting will focus on the measurement
errors in MRI that are most important when measuring fluid flows.
The modeling and estimation of these errors will be discussed and
ways will be provided on how to avoid these errors.

Figure 1: Image magnitude of a rotating flow measured with a con-
ventional MRI sequence and with a new sequence with synchronized
encoding. Because the encoding in conventional MRI is not instan-
taneous, the spatial coordinates in the flow are encoded at different
locations in the fluid leading to distortions in the measured geometry.
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Introduction

A deterministic method to characterize the reachable set of uncertain
discrete-time systems is introduced in this work. The class of the
considered systems is described by:

xk+1 = Axk + f(xk,wk) + Buk (1)

where xk ∈ D ⊂ Rn is the state vector and uk ∈ U ⊂ Rm is the input
vector. The nonlinear term f(., .) stands for the poorly-known part of
the system (1), which is assumed to be bounded:

∀xk ∈ D and ∀wk ∈ W ⊂ Rp, f(xk,wk) ∈ [f , f ] (2)

where f and f are the end-points of the smallest box which contains
the range of the function f(., .).

Definitions

Before stating the novelty of this study, some definitions about the
reachable set of dynamical systems are recalled.

Definition 1. The reachable set of the uncertain system (1), denoted
by R

(
[t0, tk], t0,X0

)
, is the set of all the possible state trajectories gen-

erated from an initial set X0 ⊂ D and solutions to the set of difference
equations (1).
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Definition 2. An outer approximation of the reachable set of (1), de-
noted by Y

(
[t0, tk], t0,Y0

)
, is a set that satisfies the following inclusion:

∀k, R
(
[t0, tk], t0,X0

)
⊆ Y

(
[t0, tk], t0,Y0

)
(3)

Main Results

The results of this work are mainly inspired from the interval-based
state estimation methods presented in [1] and [2]. The following propo-
sition introduces an interval-based predictor to characterize in a deter-
ministic way the reachable set of (1).

Proposition 1. The interval predictor (4) provides an outer approxi-
mation (5) of the reachable set of the uncertain system (1).

[xk] = Ak[x0] + [fk−1] + bk−1
[fk] = Ak[f0] + [fk−1]
bk = Abk−1 + Buk

(4)

where b0 = Bu0 and [f0] = [f , f ].

Y
(
[t0, tk], t0, [x0]

)
=

k⋃
0

[xk] ⊇ R
(
[t0, tk], t0,X0

)
(5)

Moreover, for Hurwitz matrices A, the volume of this outer approxi-
mation convergence towards a constant when tk tends to infinity.

References

[1] N. Meslem, N. Loukkas and J.J. Martinez, A Luenberger-like interval
observer for a class of uncertain discrete-time systems, 11th IEEE Asian Control
Conference (ASCC), 2107–2112, Gold Coast, QLD, Australia, 2017.

[2] N. Meslem, N. Loukkas and J.J. Martinez, Using set invariance to design
robust interval observers for discrete-time linear systems, International Journal
of Robust and Nonlinear Control, https://doi.org/10.1002/rnc.4103, 1–17, 2018.

52



Interval-Based Global Optimisation for
Geodetic Network Adjustment

Procedures

Tomke Lambertus and Jörg Reinking

Jade University of Applied Sciences Oldenburg,
Institute for measurement techniques

Ofener Str. 16, D-26121 Oldenburg, Germany
tomke.lambertus@student.jade-hs.de, reinking@jade-hs.de

Keywords: Global Optimisation, Interval Analysis, Geodetic Net-
work Adjustment

Introduction

The solution of a non-linear least-squares adjustment of a geodetic
network is derived from an optimum of the cost function, which is
the weighted sum of square residuals. If this cost function shows a
multivariate behaviour, it cannot be guaranteed that the solution is a
global optimum. Depending on the problem and the initial values for
the unknowns, the non-linear adjustment can yield a local optimum
only or even fail.

The global optimum is also computable by deterministic optimisa-
tion methods for instance by using interval analysis [2-5]. In contrast
to probabilistic optimisation methods like simulated annealing or ge-
netic algorithms, the global optimisation based on interval analysis
theoretically guarantees to find global optimum in a given interval box
presupposed that at least one optimum exists in the interval box [1].

Basic Properties

The search of a global optimum can be performed by a branch-and-
bound-strategy as proposed in [6]. In this method a multi-dimensional
interval box is defined for the unknowns which have to be optimised. In
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an iterative process the properties of the cost function in this interval
box are investigated as presented in [1, 4, 7]. The process is terminated
when the global optimum is found with a given accuracy or when it is
proven that no optimum exists.

Main Results

This approach is applied to geodetic network adjustment problems.
These examples show that a global optimum is found using this method
whereby a common non-linear least-squares adjustment (e.g. gradient-
based Gauss-Markov model) leads to an incorrect solution. The results
from the analysis as well as a discussion of the pros and cons of the
proposed approach w.r.t. network adjustment will be presented.
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Introduction

Guaranteeing integrity measures is one of the most difficult and im-
portant tasks in GNSS positioning. Integrity measures the trust of the
navigation information. The user should be alert in time if an error in
the navigation system surpasses the given alert limit. The traditional
approaches such as least squares (LS) estimation do not guarantee the
position solution and outlier detection is based on statistical tests. In-
terval based methods could be an alternative, where the solution is a
set of different shapes e.g. computed by SIVIA or linear programming
[1]. In this work we provide a comparison analysis between LS and a
Primal-Dual Polytope (PDP) bounding method for GNSS positioning.
Primal-Dual method is explained in [2].

Methodology

In both methods, the GNSS navigation Eq. (1), has to be linearized
via Taylor expansion at approximate initial position [3]. The LS so-
lution is shown in Eq. (2), and the constraints equation of the PDP
algorithm in Eq. (3) [1], where sv identifies the space vehicle and ur
the user, ρ the pseudorange measurements, cdt the clock offset, A the
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design matrix, P the weight matrix, dρ the observed minus computed,
dx̂ the estimated state vector, and ∆ the interval error bound of the
observations. LS estimation which represented in Eq. (2), is the esti-
mated correction to be applied on initial position. If the initial position
is not known, iterative LS estimation has to be applied. LS is totally
based on stochastic models where a confidence ellipsoid can be derived
from the variance covariance matrix (ATPA)−1, and outlier detection
in this case is purely based on hypothesis statistical test. Instead,
PDP method apply a deterministic interval error bound on the mea-
surements and provide a consistency check bounding zone which also
reflect the directions of the uncertainties in the position domain. The
interval error bound can be derived in different ways as explained in
[1] and [4].

ρ =
√

(xsv − xur)2 + (ysv − yur)2 + (zsv − zur)2 + cdtsv−ur (1)

dx̂ = ((ATPA)−1ATP)dρ (2)

dρ−∆ ≤ Adx̂ ≤ dρ+ ∆ (3)

The PDP algorithm converts a convex set of constraint inequalities
Eq. (3), which represent a H-polytope into a set of vertices at the
intersection of those inequalities which represent a V-polytope.

Simulated scenarios and real test drives have been analyzed to gain
a good understanding of the GNSS positioning results from both meth-
ods. Test data were recorded using Novatel Span system consisting of a
dual frequency GNSS receiver equipped with 2 antennas and an iMAR
FSAS IMU. Calibration of the platform was done in the Geodetic In-
stitute laboratory Hannover using a Leica absolute laser tracker AT930
with submillimeter accuracy. The test drive is a small set of a mea-
surement campaign which has been conducted by the DFG research
training group “I.C.SENS”. The ground truth is provided by the post
processing software TerraPos where the 2 GNSS antenna were tightly
coupled with the IMU measurements.

57



-100 -80 -60 -40 -20 0 20 40 60 80 100
East [m]

-100

-80

-60

-40

-20

0

20

40

60

80

100

N
or

th
[m

]

Primal Dual Polytope, Error Bound = 6 m

Reference
Polytope

Figure 1: PDP solution sets of GPS code measurements.
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Figure 3: Point positioning errors in horizontal and vertical directions.

Main Results

Interestingly, the volume and shape of the polytope is an inconsistency
measure rather than a confidence measure. It is related to the position-
ing geometry and revels observation of maximum impact. If a point
position (PP) is needed, the barycenter of the polytope can be com-
puted and eventually the variances. Moreover, minimum detectable
biases are derived from interval bounds and polytope shapes. Fig. 1,
shows polytopes obtained form PDP applied on the GPS code mea-
surements of the first antenna with constant error bounds equal to 6
meters in topocentric coordinate system. It is clear that, all the poly-
topes contain the true solution. However, some of the measurements
are outliers and their set solution is empty (discontinuity in polytope
PP errors in Fig. 3), which provides guaranteed bias detection. Fig.
3, shows the errors in horizontal and vertical direction of the point
positioning from LS and PDP algorithms. When we have bad geom-
etry (large DOP values), PDP solution deteriorate and shows higher
peaks than LS. However, the overall performance of PDP PP shows
better results than LS where the relative cumulative frequency of the
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coordinate errors of PDP over-perform LS (see Fig. 2).
As a conclusion, polytope PP is more accurate and precise than the

LS PP, but it is more sensitive to the navigation geometry. Moreover,
PDP algorithm provides guaranteed bias detection and exclusion.
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Introduction

To navigate, robots have to localize themselves in the environment.
Since GPS might not be available, robots need to estimate their ego-
motion gradually using different sensors such as cameras, laser scan-
ners and/or inertial measurement units (IMUs). In the past, we devel-
oped a probabilistic approach to estimate the robot’s odometry using
a monocular camera and a depth sensor while simultaneously estimat-
ing the sensors’ clock offsets [1]. Nevertheless, our approach and most
other approaches [2] focus on computing a point-valued position for
the robot only while neglecting the uncertainty of the pose estimation.
However, due to the imperfections of every sensor, this point position
might be erroneous. Further difficulties are the nonlinearity of the
problem, which can lead to further deviations from the true position,
and outliers, which can affect the result of these approaches since they
tend to compute a solution that satisfies all observations. To overcome
these issues, we propose an interval-based approach. Our method fuses
camera, laser scanner and IMU information while taking the sensors’
uncertainties into account to compute intervals for the robot’s pose in
3D. Similar work was done by Kenmogne et al. [3], but they compute
their robot’s position relative to known landmarks, which we assume to
be not available. Bethencourt and Jaulin [4] solve a similiar problem to
ours, but apply it to 3D reconstruction instead of localization. While
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we do not believe that interval-based approaches will replace existing
probabilistic approaches, our approach can be used to constrain the
initial search space of probabilistic methods or to detect errors in the
probabilistic solution.

Method

We estimate the robot’s motion from one image frame to another.
First, we find corresponding image features between image frames us-
ing SIFT [5]. Since depth (distance) information is needed to estimate
the odometry from matched feature points, we use scan points from a
laser scanner and find a guaranteed interval for a feature’s depth. For
this, we assume an unknown but bounded error for both sensors and for
the transformation between the sensors. By projecting the laser scan-
ner’s scan boxes onto the image plane, we find all possible scan points
for an image feature and calculate the depth as the union over all those
scan boxes’ depths. Our method is keyframe-based, which means that
we estimate the motion from the current image frame relative to the
most recently defined keyframe until we have to insert a new keyframe
(e.g. if we cannot match enough features). To contract the intervals for
the motion between two frames, we use a forward-backward contractor
based on the rigid body transformation

Xk
i = RXc

i + T, (1)

where Xk
i and Xc

i are the 3D coordinates of the same feature i in
the keyframe k and the current frame c, respectively. R and T are
the rotation matrix and the translation vector, for which we want to
contract the intervals. By reformulating the equation it is possible
to also include features with depth information in one frame only or
without any depth information. To find an initial enclosure for the
rotation parameters, we use measurements from the IMU. Since some
feature matches might be wrong, we use a relaxed intersection for the
contractors to not only account for, but also identify outliers. Finally,
if we have to insert a new keyframe, we use further constraints to
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Figure 1: Odometry results.

contract the intervals for the motion to the previous keyframe (like
bundle adjustment).

First Results

To evaluate our approach we use small sequences from the KITTI data
set [6]. After some time, we use GPS measurements to contract the
intervals. Otherwise, the localization uncertainty grows infinitely large
due to drift and the boxes convey no information anymore. For future
work, we plan to build a map or use loop closure to prevent drift. In
the first experiment (c.f. Figure 1(a)) we use GPS measurements every
three seconds; in the second experiment (c.f. Figure 1(b)) we use GPS
measurements whenever we have to insert a new keyframe. In both
figures the red dots depict the true solution (GPS), the blue boxes
depict our localization results and the green boxes depict a keyframe.
It can be seen that the true solution is always enclosed in our intervals.
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Introduction

The Robot Operating System [1] (ROS) is a collection of tools and
libraries helpful for robotic applications. It is centered on a message
passing middleware, provides data recording, replay and visualization
tools, device drivers, and implementations of robotic algorithms (nav-
igation, planning...).

We present the interval ROS package. It enables the use and dis-
play of interval data in the ROS framework.

Interval Data Types: interval msgs

One of the key features of ROS is message passing between so called
nodes, in a publish-subscribe pattern. ROS comes with a set of pre-
defined messages, from basic types (like Bool, Float64, String...)
to complex types specific to robot applications (like Point, Image,
Path...).

The first step to facilitate interval computations with ROS is to
define interval message types, so that interval computation nodes can
communicate. Intervals are defined for the basic Float, Time and
Duration types using two fields: a lower bound (lb) and and an upper
bound (ub). Boxes are defined, both as arrays of the basic interval
types, and as the interval counterpart of common messages like Point

and Vector3. We also provide structures representing subpavings.
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Visualization: interval rviz plugins

RViz is the 3D visualization tool provided with ROS. It features off-
the-shelf ways of displaying positions, paths, maps and images, while
performing all necessary transformations to convert all data into the
same reference frame. The interval rviz plugins ROS package contains
RViz plugins, enabling “click and play” display of boxes and subpavings
in the RViz window.

Interval Computations: interval tools

The interval tools package provides utility nodes for conversion be-
tween standard ROS point-valued types and interval types: “inflating”
standard messages into interval messages, extracting the midpoint of
an interval message (interval or subpaving), extracting the radius of a
box, etc. This is useful for easy interfacing with existing ROS nodes.

The package also contains a SIVIA node, which publishes the result
of Set Inversion via Interval Analysis as subpavings [2]. This node uses
contractors from the Ibex library [3]. The expression of the function
to be inverted is configurable as a parameter.

The processing and visualization capabilities of the interval ROS
package will be demonstrated with a live set-membership estimation
problem.
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Introduction

In this paper, we address the problem of cooperative pose estimation [1]
in a group of N unmanned aerial vehicles (UAV), each equipped with
a camera that sees landmarks with known positions. The UAVs com-
municate, exchange poses and measure distances with neighbours and
a base station. Our aim is to compute the pose domain of each robot
assuming the errors on measurements are bounded.

Single Robot Pose Estimation

Each robot first estimates its pose domain r = (x, y, z, φ, θ, ψ) using
camera and base distance constraints. To get the camera constraints,
the perspective projection equation (Eq. (1), pinhole camera model)
of a 3D world point wX in the camera frame represented in normalized
coordinates x = (cx,c y) is used (see [2] in camera only case).

x = Π cTr
rTw(r) wX (1)

with rTw the unknown transformation matrix between the world ref-
erence frame and a frame attached to the robot and cTr is the known
rigid transformation between the camera and the robot frames. Eq. (1)
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is applied for each visible landmark wXi (i ∈ 1..m) and the following
constraints can be derived

Ci:


(cXi,

cYi,
cZi) = cTr

rTw(r) wXi
cxi =

cXi
cZi
,c yi =

cYi
cZi
,

cxi ∈ [cxi],
cyi ∈ [cyi],

cZi > 0.
(2)

The image/range-based pose estimation problem is then defined as
a constraint satisfaction problem (CSP)

H:

 r ∈ [r],
{Ci, i ∈ 1...m}

Cdist

 ,

where Cdist is the additional distance constraint between the robot
position p = (x, y, z) and the base station B used to get a tighter pose
estimate

Cdist:d = ‖p− b‖2 , d ∈ [d]

with b the known position of the base station.
A robot Rk computes a domain in a form of an outer subpaving

S+rk, that contains all the feasible poses, using SIVIA [3] to solve H.

Robots Cooperation: Data Exchange

At each time step, once the pose domain S+rk is computed, the robot
exchanges the bounding box of its position domain [pk] = � projp S+rk,
where � is the bounding box operator, and projp is the projection onto
the position space. The position [pk] is transmitted to all neighboring
robots Rj, j ∈ N (k), and the distances dk,j between Rk and Rj are
simultaneously measured (with N (k) the neighbours of Rk).

At reception of information (position boxes [pj] and bounded-error
distances measurements [dk,j]) from neighboring robots, Rk tries to
refine its actual pose domain, by propagating the new distance con-
straints between Rk and each of its neighbours. A CSP is also built
and SIVIA is used to refine the pose domain.
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Experimental Results

The proposed method has been tested with data acquired on Parrot
AR-Drone2 UAV, with 5 landmarks represented by AprilTag markers.
The image measurement error bounds are set to ±0.5 px and the range
measurement error is assumed to be within ±5 cm.

Figure 1: Pose domain for 4 robots.

The left part of Fig. 1 shows subpavings obtained when all 4 robots
observe the 5 landmarks (full visibility case). The image on the right
of Fig. 1 shows how cooperative localization reduces the feasible pose
domain when one robot (in red) cannot clearly see the landmarks,
by propagating position information of the neighbours. The average
horizontal position error is less than 5 cm for each of the drones.
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Introduction

Standard system identification methods provide only an estimation of
the nominal model but do not provide a reliable means for bounding
the uncertainty associated with the model. Recently some methodolo-
gies that provide a model with its uncertainty have been developed
but thinking always in its application to control. The term of Ro-
bust System Identification is used to describe the new methodologies
of system identification that provide not only a nominal model but
also a reliable estimate for the uncertainty associated with the model.
In the Fault Detection and Identification (FDI) community, [1] have
suggested an adaptation of classical system identification methods in
order to provide the nominal model plus the uncertainty bounds for
parameters that guarantee that all collected data from the system in
non-faulty scenarios will be included in the model prediction interval.
Those methods use zonotopes to enclose an outer approximation of
the feasible parameters. However, in the setting of safety critical sys-
tems, the worst-case view needs to be complemented by regarding also
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type II errors to guarantee correct functional behavior. A method that
will only verify a system if the real behavior is given by parameters
within the nominal parameter set was presented at SWIM SMART
2017 and published in [3]. The main difference to [1] is that an in-
ner approximation of the feasible parameter set is used instead of an
outer approximation. Kaucher interval arithmetic is used to enclose
measurement noise with known properties leading to guaranteed veri-
fication of the system behavior. A robust fault detection method was
developed by combining previous work of the authors [2]. The new
method uses Kaucher arithmetic to define the feasible solution set as
introduced in [3]. This set is initially bounded by a zonotopic outer
enclosure which is then shrunken as proposed by [1] to achieve a zono-
topic inner enclosure. The shrinking is done here by interpreting the
Kaucher representation of the measurement data as constraints of an
optimization problem. The feasibility of a zonotope with respect to
all constraints can be checked efficiently by using the Prager-Oettli
theorem now applied to all vertices of the zonotope. The result of the
optimization is an area maximal zonotopic inner enclosure of the united
solution set given by the measurement data. The proposed approach is
applied to measurement data obtained from a real single-tank process.
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In this paper, we consider a state estimation problem in the case

where we have to solve the data association problem. This problem
can be formalized by the following state equations: ẋ(t) = f (x(t)),u(t)) (evolution equation)

g(x(t),y(t)) ∈M (observation constraint)
x(0) ∈ X0 (initial state)

(1)

where x is the unknown state vector, y an output measurement vector,
u an input measurement vector. It is known that for all t, u(t) ∈ [u]
and y(t) ∈ [y]. The state vector x(t) is consistent with the interval
measurement [y] (t) if

∃m(t) ∈M,∃y(t) ∈ [y] (t), m(t) = g(x(t),y(t)).

The existential quantification ∃m(t) ∈ M highlights the requirement
of solving the so-called data association problem which aims at find-
ing which point of M is associated with the measurement vector y.
If M is composed with finite number of isolated points. Our problem
copes with the initial localization problem on a field of point land-
marks that are indistinguishable . All measurements have the same
aspect and cannot be associated directly with a particular point of the
map. This problem frequently arises when acoustic sensors are used to
detect underwater environmental features. In this paper, we propose

73



an interval-based method to solve the localization problem efficiently
[1],[2].

As an application, we will consider an underwater robot starting
its mission with a huge position uncertainty ans illustrated by Figure
1. For operational reasons, no external positioning system, such as
acoustics beacons or USBL, are deployed. We assume that a part of the
mission area has been previously mapped during a previous survey and
this area is large enough to be reached by the AUV. The corresponding
map M describing this area is modeled by a set of 280 point landmarks.
Our robot performs a small mission pattern as depicted in Figure 1. It
senses its environment using a forward-looking sonar oriented toward
the seabed, the scope of which is represented by the blue pie. Every
three seconds, it is able to measure the distance and bearing between
its pose to some landmarks which range between 10 and 70 meters.
The positions of the detected landmarks are depicted by green dots.
The 90 red segments represent the measurements. Note that only a
small number of mapped landmarks have been detected.
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Figure 1: The simulated environment for initial localization. The tra-
jectory of the AUV is depicted by the blue lines. Its starting point
is drawn by the red dot. The map is composed of 230 landmarks
represented by black dots.
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Introduction

An approach is presented to determine the observability of nonlinear
systems on a given hyperrectangle using interval methods. In case
the nonlinear system is not entirely observable on a given state space,
the local observability is provided by the algorithm. In this case, the
algorithm delivers all hyperrectangles which are indistinguishable. For
those observability cannot be proven.

Concept and Approach

Consider a nonlinear system which can be described by the set of
ordinary differential equations (ODEs)

ẋ (t) = f (x (t)) , x (0) = x0 and y = h (x (t))

with f :Rn → Rn and the output h:Rn → Rm as real-analytic functions.
To determine the observability of such a nonlinear system the distin-
guishability of the observability function defined by the Lie derivatives

Lkfh (x) =
∂

∂x

(
Lk−1f h (x)

)
f (x)

is investigated, with k = 1, . . . , κ and L0
fh (x) = h (x). The Lie deriva-

tives are computed automatically by using (the corresponding) power
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series. Therefore, it is not necessary to solve the Lie derivatives itself.
The amount of Lie derivatives κ cannot be determined in advance and
depends on the nonlinear system. However, the presented iterative
interval-based approach is able to adjust κ dynamically.

Due to the use of interval methods distinguishability and there-
fore observability cannot be proven through the observability function
alone. Since the algorithm bisects the initial hyperrectangle further
and further, neighboring hyperrectangles will always have at least one
common point. However, this issue can be resolved by checking the
local condition

rank

(
∂q (x)

∂x

)
= n

with q (x) being the observability function. The Jacobian of q (x) is
computed with automatic differentiation used in the power series ex-
pansion. Furthermore, the rank condition is checked by computing the
eigenvalues of the Jacobian. The interval eigenvalues are enclosed with
a method provided by [3].
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Introduction

A huge number of dynamic models for heat transfer systems, resulting
for example from a finite volume semi-discretization of the underlying
partial differential equations, are naturally characterized by the prop-
erty of cooperativity [2,3]. This property reflects the monotonicity of
the state trajectories, both with respect to uncertain initial conditions
and uncertain system parameters. If a worst case range enclosure of
these uncertain quantities can be specified during system modeling or
by means of interval-based global optimization procedures during pa-
rameter identification, the property of cooperativity can be exploited
to easily compute guaranteed lower and upper bounds for each of the
system states at least in an open-loop manner, where the system inputs
are given a-priori as time-dependent expressions.

However, the situation becomes more complex if observer-based
state estimation procedures are to be applied for such systems. In or-
der to preserve the cooperativity of the uncertain system model, it is
necessary that the choice of the observer gain matrix, which superim-
poses a weighted difference between the measured and estimated sys-
tem outputs (both containing interval uncertainty) onto the open-loop
system dynamics, does not destroy the property of cooperativity [2].
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Main Results

This contribution describes recent results for the design of cooperative
state observers for uncertain linear systems ẋi(t) = Aixi(t) + Biu(t),
Ai ∈

[
Ai ; Ai

]
, Bi ∈

[
Bi ; Bi

]
which are described by a union of in-

dividual parameter-dependent system representations i ∈ {1, . . . , L},
where each of the submodels itself depends on the interval parameter

vectors pi ∈
[
p
i

; pi

]
. Firstly, guaranteed lower and upper bounds

for all states xi(t) ∈ [vi(t) ; wi(t)] compatible with each of the L sub-
models and corresponding measurements ym(t) ∈ [ym] (t) = Cx(t) +
[−∆ym ; ∆ym] with interval tolerances are estimated in terms of the
observer outputs for which the enclosure property [vi(t) ; wi(t)] ⊆
[v̂i(t) ; ŵi(t)] holds. Secondly, the estimates are employed to imple-

ment closed-loop controllers u = −
L∑
i=1

(
Kiv̂i + Kiŵi

)
as a natural ex-

tension of classical linear feedback approaches [1] stabilizing the desired
operating point x = 0 in a guaranteed way despite bounded uncer-
tainty in the system model. The associated control design (aiming
again at a preservation of cooperativity to easily predict the range of
all reachable states) is highlighted for a prototypical heat transfer test
rig available at the Chair of Mechatronics at the University of Rostock.
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The design of interval observers for systems with cooperative state
equations has already been published, for example, in [1] and [2]. Here,
the property of cooperativity is regarded as an efficient approach to
handle uncertain dynamic system models as well as uncertain mea-
surements, when these uncertainties are bounded by interval variables.
If an uncertain dynamic system is cooperative, several tasks can be
highly simplified, such as the computation of guaranteed state enclo-
sures, the design of interval observers, forecasting worst-case bounds
for selected system outputs in predictive control, and the identifica-
tion of unknown parameters. Cooperative systems result naturally for
many models in biological, chemical, and medical applications. How-
ever, there is also a large number of systems (typically from the fields
of electric, magnetic, and mechanical applications) which do not show
this property if the state equations are derived using first-principle
techniques. To exploit the advantages of cooperativity in these cases
too, we aim at transforming such system models into an equivalent
cooperative form. Unfortunately, these transformations are often not
straightforward, especially, if linear systems and nonlinear ones with
state-dependent system matrices are subject to bounded parameter
uncertainty. This matter was already discussed in [3], where a distinc-
tion between a time-invariant transformation for systems with purely
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real eigenvalues as well as time-varying transformation in the case
conjugate-complex eigenvalues was made. In this presentation, how-
ever, we want to consider a system with a mixture of both types of
eigenvalues. For this, we make use of the work in [3], where it was
shown, that typically there exists no time-invariant transformation for
conjugate-complex eigenvalues. However, the time-varying transforma-
tion needs to assume that domains of conjugate-complex eigenvalues
are strictly decoupled from uncertain real eigenvalues so that an in-
termediate transformation into the real-valued Jordan canonical form
exists (forbidding break-away points of the root locus from the real
axis into the complex domain). If this is the case, not only the exis-
tence of a transformation matrix is proven, but also the system can be
decoupled into two systems, one with purely real and the other with
conjugate-complex eigenvalues. The known procedures of [3] are ap-
plied to find two separate suitable transformation matrices and both
decoupled systems can be transformed into a cooperative form indi-
vidually with less conservatism than handling all eigenvalues by the
time-varying transformation. Finally, the system can be re-combined
into a full cooperative form. The procedure is tested on a stacker crane
with interval parameters as a real-life application scenario.
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[2] D. Efimov, T. Räıssi, S. Chebotarev, and A. Zolghadri,
Interval State Observer for Nonlinear Time Varying Systems, Au-
tomatica, vol. 49, no. 1, pp. 200–205, 2013.

[3] J. Kersten, A. Rauh, and H. Aschemann, State-Space Trans-
formations of Uncertain Systems With Purely Real and Conjugate-
Complex Eigenvalues Into a Cooperative Form, Proc. Methods and
Models in Automation and Robotics, Miedzyzdroje, Poland, 2018.

81



Reliable Propagation of Time
Uncertainties in Dynamical Systems

Simon Rohou1, Luc Jaulin2, Lyudmila Mihaylova3, Fabrice
Le Bars2 and Sandor M. Veres3

1 IMT Atlantique, LS2N, Nantes, France
simon.rohou@imt-atlantique.fr

2 ENSTA Bretagne, Lab-STICC, Brest, France
3 The University of Sheffield, Sheffield, United Kingdom

Keywords: State Estimation, Time Uncertainties, Nonlinear Sys-
tems, Tubes, Robotics, Constraints, Contractors

Contractor Programming

Our problem is to completely deal with dynamical state estimation by
using a constraint programming approach. In a nutshell, the method
consists in breaking state equations into a set of elementary constraints
that must be satisfied by the variables of the problem. In our case, the
constraints may be non-linear or differential equations and the vari-
ables are vectors (e.g. z ∈ Rn) or trajectories (e.g. x(·) ∈ R → Rn).
The variables are known to belong to some domains. For vectors of Rn,
we will use boxes in IRn. For trajectories, we will use tubes denoted
by [x](·):R → IRn. Constraints will be applied on these domains by
means of operators C called contractors [2].

Contribution

State estimation usually involves algebraic and differential constraints
on trajectories such as a(·) = sin

(
b(·)
)

or ẋ(·) = v(·). The related
contractors have been the subject of some work. It remains to deal
with the following elementary evaluation constraint denoted by Leval:

Leval

(
t, z, y(·), w(·)

)
:
{
z = y(t) , ẏ(·) = w(·)

}
(1)

82



with t ∈ [t], z ∈ [z], y(·) ∈ [y](·), w(·) ∈ [w](·). Here, w(·) is the
derivative of the signal to be evaluated. The problem is complex as
it may involve time uncertainties related to [t] that are difficult to
propagate through the differential equation.
We propose the related contractor Ceval, see [1], that will reliably reduce
the sets of feasible solutions by contracting the bounds of the tube [y](·)
and the intervals [t] and [z]. Figure 1 provides an illustration of the
evaluation of a trajectory in a bounded-error context.

[z′]

[t′]

[t]× [z]

t
t0

[y]

m

Figure 1: Evaluation on a tube [y](·). A given measurement m ∈ R2,
pictured by a black dot, is known to belong to the blue box [t]×[z]. The
tube is contracted by means of Ceval; the contracted part is depicted
in light gray. Meanwhile, the bounded observation itself is contracted
to [t′]× [z′] with [t′] ⊆ [t] and [z′] ⊆ [z]. This is illustrated by the red
box. The dark line is an example of a compliant trajectory.

References

[1] S. Rohou, L. Jaulin, L. Mihaylova, F. Le Bars, and S. M.
Veres, Reliable non-linear state estimation involving time uncer-
tainties, Automatica, 93 (2018), 379–388.

[2] G. Chabert and L. Jaulin, Contractor programming, Artificial
Intelligence, 173(11) (2009), 1079–1100.

83



VERICOMP: Comparing and
Recommending Verified IVP Solvers

Ekaterina Auer1, Andreas Rauh2 and Lorenz Gillner1

1 Hochschule Wismar, Department of Electrical Engineering
University of Technology, Business and Design, D-23966 Wismar, Germany

ekaterina.auer@hs-wismar.de
2 University of Rostock, Chair of Mechatronics

Justus-von-Liebig-Weg 6, D-18059 Rostock, Germany
andreas.rauh@uni-rostock.de

Keywords: Verified IVP Solvers, VERICOMP, Comparison
Research on methods with result verification [1] continues for over

half a century and many open source libraries implementing the con-
cepts are available as of now. However, engineers rarely apply them to
deal with uncertainty or to verify their computations. One of the rea-
sons is the lack of information which of the accessible tools to use for a
given problem to achieve the best possible result. Sometimes the choice
of the wrong approach can lead to conservative results discouraging the
use of the whole branch of methods. The goal of the platform VERI-
COMP [2] is to make the situation better at least in one area, namely,
for verified initial value problem software for ordinary differential equa-
tions (IVPS). Additionally, it offers developers of verified IVPS a possi-
bility to compare their solvers with the established ones. VERICOMP
can be of use here for facilitating such projects as ARCH-COMP 2018
(cps-vo.org/group/ARCH/FriendlyCompetition), a competition on
verifying continuous and hybrid systems.

Differential equations are indispensable as a mathematical model
for dynamic systems or processes in many applied areas of science.
Developing methods for comparing IVP solvers based on traditional,
non-verified techniques has been an important task at least since the
nineteen seventies [3]. The general goal of such comparison systems is
to highlight advantages of various tools. There are a lot of challenging
tasks that need solving in order to achieve this goal. A standard set of
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problems has to be developed along with a set of fair criteria. More-
over, means of presenting the gathered statistics need to be devised,
at their best allowing for immediate grasp of the obtained knowledge.
Such platforms as TEST SET (archimede.dm.uniba.it/~testset/
testsetivpsolvers/) provide their view on the solution for floating-
point based solvers. However, verified libraries for the same purpose
have to be compared differently. On the one hand, the correctness of
the result does not have to be assessed since the outcomes described
by enclosures of the reachable states are mathematically proven to in-
clude the exact solution to the problem. On the other hand, verified
algorithms have a break-down point after which no meaningful solution
can be computed, something that the traditional tools do not exhibit
quite as obviously.

To our knowledge, VERICOMP is the only system for automated
comparison of existing verified IVPS. Formerly available under an ad-
dress at the University of Duisburg-Essen, it was shut down there.
Functionality pertaining to the developed problem test set will be re-
leased shortly under vericomp.fiw.hs-wismar.de. A substantially
extended release of VERICOMP with respect to semi-automatic addi-
tion of new solvers is our long-term goal. In this contribution, we will
discuss general challenges that developing such a system presents, for
example, the questions of devising a fair set of criteria or a meaningful
classification of available problems allowing for automatic recommen-
dation of solvers based on the already existing results. Additionally,
we will address the means of visualizing the obtained information.
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Abstract

In control theory, uncertainties are often added into the models to de-
scribe the behaviour of systems. For the case of non linear systems,
such uncertainties produce complex dynamics that make its analysis
to become more complicated and impractical. In such cases, Viability
theory [1] offers an alternate view of the problem; in which by using
some constrains, guaranteed integration techniques and interval anal-
ysis it is possible to obtain guaranteed regions numerically in the state
space to verify if the evolution of the system remains in certain region
under a set of constrains for a defined period of time, in other words
to verify if a system is viable.
In this paper, we propose a method to compute an approximation of
the viability kernel for the system system S defined by

ẋ(t) = f(x(t), u(t)) + γ

u(t) ∈ U
(1)
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where x(t) ∈ Rn is the system state, U is a compact subset of Rm,
u ∈ U = u:R+ 7−→ U, f :Rn × U 7−→ Rn being f a continuous and
locally Lipschitzian function bounded in Rn×U, Γ is a compact subset
of Rp and γ ∈ Γ.

The algorithm, based on interval methods, is used for obtaining the
set inner (Vin), which belongs to the viable set, and its complement
(Vout); to approximate the viability kernel inside an initial box K ⊂ Rn.

The implementation of this algorithm, supposes that an initial approx-
imation of the viability kernel has been found. The initial approxima-
tion of the viable set, is defined as the boxes of the subpaving Vin that
belong to the V iabS(K) [2]. Such set can be obtained using Lyapunov
theory or V-viability theory [2].
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