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Context
Switching systems

The topic of diagnosis of complex systems is an important issue in many engineering
fields

I Automotive
I Metallurgy
I Aerospace industries

The class of switching systems is one of important classes of hybrid systems. They
involve

I continuous
I discrete dynamics

Definition 1

Switched system consists of a finite number of continuous dynamical subsystems
combined with a discrete rule that operates switching between these subsystems.
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Interval estimation

Switched systems have been studied in the frame of
I Stability
I Stabilization
I Observation

Remark 1

The problem of unmeasurable state vector estimation is very challenging

Remark 2

A conventional estimator is not possible when the system is subject to uncertainties

Solution

Interval estimation
[Mazenc et al., 2014, Raïssi et al., 2012, Chebotarev et al., 2015,
Efimov et al., 2013a, Wang et al., 2015, Ifqir et al., 2017]
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LPV systems

Non-linear systems

Some state estimation methods are based on the approximate linearization which can
lead to an unprecedented level of obstruction in practice
[Efimov et al., 2013b]

Solution

A broad class of nonlinear systems can be presented in a LPV form
[Lee, 1997, Shamma and Xiong, 1999, Marcos and Balas, 2004,
Hecker and Varga, 2004, Heemels et al., 2010]
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Interval observer / Stability
State estimation based on interval methods had been proposed for :

I Time-invariant and parameter-varying systems
I LPV systems with parametric uncertainty
I Linear time-invariant switched systems with disturbances

References

[Mazenc et al., 2014, Raïssi et al., 2012, Efimov et al., 2013b, Wang et al., 2015,
Lamouchi et al., 2018, Ethabet et al., 2017, Ifqir et al., 2017]

Stability had been treated by :
I Common Lyapunov Functions
I Multiple Lyapunov Functions

References

[Liberzon and Morse, 1999, Narendra and Balakrishnan, 1994,
Hespanha and Morse, 1999, Niu and Zhao, 2011]
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Contribution

XXX

Design of an interval observer for LPV switched systems when:

I The scheduling vector is described by a convex combination

I The measurement noises and the state disturbances are assumed to be unknown
but bounded with known bounds

Input-to-State Stability and cooperativity of the upper and lower observation errors
are ensured
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LPV switched system

Given a system described by:{
ẋ (t) = Aq(ηq)x (t) + Bq(ηq)u (t) + wq (t)
y (t) = Cx (t) + v (t)

, q ∈ I (1)

I Aq ∈ Rn×n, Bq ∈ Rn×l and C ∈ Rm×n

I q is the index of the active subsystem and assumed to be known
I N is the number of subsystems
I wq ∈ Rn is the state disturbance
I v ∈ Rm is the measurement noise.
I ηq = [ηq1 , ..., ηqr ]

T the collection of measured time varying parameters.
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Assumptions
We assume that the matrices Aq(ηq), Bq(ηq) depend affinely on ηq:

Aq(ηq) = Aq0(ηq) + ηq1Aq1 + ...+ ηqrAqr
Bq(ηq) = Bq0(ηq) + ηq1Bq1 + ...+ ηqrBqr

, q ∈ I

Assumption 1

The measurement noise and the state disturbance are assumed to be unknown but
bounded with a priori known bounds such that:

wq ≤ wq ≤ wq, |v(t)| ≤ vJm

Assumption 2

ηq = [ηq1 , ..., ηqr ]
T the collection of measured time varying parameters are

constrained in polytopes Eq; Eq depend on the active mode. We denote by η(i)q ,
i = 1, ..., g the vertices of each Eq.

Assumption 3

For all vertices of Eq and for all q ∈ I, the pairs (Aq(ηq),C ) are detectable.
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The aim is to estimate two states, an upper state x and a lower one x such that
the solution of the system is between two trajectories without crossing each
other and under the assumption that the initial condition x0 verifies
x0 ≤ x0 ≤ x0 with known x0, x0 ∈ Rn.
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Interval design for LPV switched system

Interval observer structure

{
ẋ = (Aq(ηq)− Lq(ηq)C ) x + Bq(ηq)u + wq + Lq(ηq)y + |Lq|vJm
ẋ = (Aq(ηq)− Lq(ηq)C ) x + Bq(ηq)u + wq + Lq(ηq)y − |Lq|vJm

, q ∈ I (2)

The observer gain Lq(ηq) has an affine form shown below:

Lq(ηq) = Lq0 + ηq1Lq1 + ...+ ηqrLqr

where Lqj ∈ Rn×m, j = 0, 1, ..., r , are constant matrices.

Goal

The observer gains Lq are sought to guarantee that Aq(ηq)− Lq(ηq)C are Metzler
matrices.
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Cooperative systems

Lemma 1

Consider the system described by

ẋ(t) = Ax(t) + u(t) (3)

If A is Metzler, the input u verifies u(t) ≥ 0 and the initial condition x0 is chosen as
x0 ≥ 0, then the state x stays nonnegative for all t ≥ 0. The system (3) is said to be
cooperative or nonnegative

Definition 2

A matrix A ∈ Rn×n is called Metzler if there exists ε ∈ R+ such that

A + εIn ≥ 0 , ∀q ∈ I

The interval observer should verify two conditions:
1 Cooperativity: x(t) ≤ x(t) ≤ x(t), ∀t ≥ t0
2 Stability of e = x − x and e = x − x
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Interval design for LPV switched system

Theorem 1/2

Consider the continuous-time LPV switched system (1), where Aq(ηq) and Bq(ηq)
are affine matrices of ηq, and ηq is supposed to be measured. If there exist matrices
P and Qq(η

(i)
q ) that satisfy the conditions:

(1) P ∈ Rn×n is a diagonal positive definite matrix;

(2) The Metzler property of Aq(ηq)− Lq(ηq)C is satisfied ∀ η(i)q

PAq(η
(i)
q ) + Qq(η

(i)
q )C + εP ≥ 0 , ∀q ∈ I (4)

(3) The LMI conditions shown in (5) are feasible for all the vertices η(i)q of Eq ,
i = 1, ..., g

Aq
T (η

(i)
q )P + PAq(η

(i)
q )− [CTQT

q (η
(i)
q ) + Qq(η

(i)
q )C ] < 0, ∀q ∈ I , (5)
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Interval design for LPV switched system

Theorem 2/2

Qq(η
(i)
q ) are affine matrices of η(i)q given by

Qq(η
(i)
q ) = Qq0 + η

(i)
1 Qq1 + ...+ η

(i)
r Qqr (6)

where Qqj ∈ Rn×m, j = 0, 1, ..., r are constant matrices,

then the observer gains Lqj , j = 0, 1, ..., r can be obtained as:

Lqj = P−1Qqj (7)
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Interval design for LPV switched system

Using the proposed theorem:

The observer gain Lq(ηq) is calculated in real time.

The stability is ensured by a common Lyapunov function.

By assuming that the scheduling vector is described by a convex combination
and its parametric uncertainties belongs to polytopes, we will prove that
resolution of LMIs becomes less conservative.
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Interval design for LPV switched system
Proof

Aq(ηq) depends affinely of ηq ⇒ Aq(ηq) can be written as a convex
combination form [Hetel et al., 2006].

⇒ Aq(ηq) = λ1Aq(ηq
(1)) + ...+ λgAq(ηq

(g)) =

g∑
i=1

λiAq(η
(i)
q )

Lq(ηq) depend affinely of ηq ⇒ Lq(ηq) can be written as a convex combination
form.

⇒ Lq(ηq) = λ1Lq(ηq
(1)) + ...+ λgLq(ηq

(g)) =

g∑
i=1

λiLq(η
(i)
q )

where λi ≥ 0 and λ1 + ...+ λg = 1

Aq(ηq
(i)) represent the vertices of the state matrices of each polytope Eq

Lq(ηq
(i)) represent the vertices of the observer gain.
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1 Cooperativity

Define the estimation errors e (t) = x − x and e (t) = x − x

ė (t) = ẋ − ẋ = (

g∑
i=1

λi [(Aq(ηq
(i))− Lq(ηq

(i))C )])e + χq

ė (t) = ẋ − ẋ = (

g∑
i=1

λi [(Aq(ηq
(i))− Lq(ηq

(i))C )])e + χq

(8)

where:
χq = wq − wq + Lq(ηq)v + |Lq|vJm
χq = wq − wq − Lq(ηq)v + |Lq|vJm

(9)

If there exist ε ∈ R+ such that Aq(ηq
(i))− Lq(ηq

(i))C + εIn ≥ 0 ⇒
Aq(η

(i)
q )− Lq(η

(i)
q )C are Metzler matrices

wq ≥ |wq| and v ≥ |v | ⇒ χq(t) ≥ 0, χq(t) ≥ 0.

⇒ It follows that e(t) ≥ 0 and e(t) ≥ 0 ⇒ x(t) ≤ x(t) ≤ x(t).
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g∑
i=1

λi [(Aq(ηq
(i))− Lq(ηq

(i))C )])e + χq

(8)

where:
χq = wq − wq + Lq(ηq)v + |Lq|vJm
χq = wq − wq − Lq(ηq)v + |Lq|vJm

(9)

If there exist ε ∈ R+ such that Aq(ηq
(i))− Lq(ηq

(i))C + εIn ≥ 0 ⇒
Aq(η

(i)
q )− Lq(η

(i)
q )C are Metzler matrices

wq ≥ |wq| and v ≥ |v | ⇒ χq(t) ≥ 0, χq(t) ≥ 0.

⇒ It follows that e(t) ≥ 0 and e(t) ≥ 0 ⇒ x(t) ≤ x(t) ≤ x(t).

19/34
Chaima ZAMMALI Interval estimation for continuous-time LPV switched systems



Introduction Problem statement Interval state estimation Numerical example Conclusions

Interval design for LPV switched system

1 Cooperativity

Define the estimation errors e (t) = x − x and e (t) = x − x
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ė (t) = ẋ − ẋ = (
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2 Stability

Consider the Lyapunov function V (e) = e(t)TPe (t) with P = PT > 0.
The derivative of V is given by:

V̇ (e) = eT [(Aq(ηq)− Lq(ηq)C )TP + P(Aq(ηq)− Lq(ηq)C )]e−
2eTPwq + 2eTPLq(ηq)v + 2eTPwq + 2eTP|Lq|vJm

Lemma

Consider two vectors u, v ∈ Rn, then:

2uTMv ≤ 1
%uTMu + %vTMv

holds for any constant % > 0 and any positive definite matrix M.

The derivative of V satisfies:

V̇ (e) ≤ eTB1e + C1
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where:
B1 = (Aq(ηq)− Lq(ηq)C )TP + P(Aq(ηq)− Lq(ηq)C )

C1 = −%qwT
q Pwq + %qwT

q Pwq + %qvTLq
TPLqv+

%qJm
T v | Lq |T P | Lq | vJm

B1 < 0

Under the assumption that the uncertainties wq and v are bounded, C1 is also
bounded, the system (8) is ISS and the upper and lower error estimation are
bounded.
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Results of the contribution

Stability and cooperativity properties have been relaxed thanks to the polytopic
shape of the system parameters, the observer has been modeled taking into
account the uncertain state matrix and not its upper and lower bounds.

LMIs and cooperativity conditions are expressed on the vertices of each
polytope in order to avoid any infinite dimensional problem due to the time
varying measured parameters.
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Consider the LPV switched system (1) with:
N = 3

ηq = [ηq1 ηq2]
T

Based on the representation Eq (10), matrices of the system are chosen as bellow :

A10(η1) =

[
−10η12 0.1
−3 −η12

]
, A11 =

[
−0.5 1.5
−0.5 −1

]
, A12 =

[
2 −0.5
−0.5 −1.5

]

B10(η1) =

[
−η12 1
1 0

]
, B11 =

[
−2 2
1 0.5

]
, B12 =

[
2 3
3 2

]
A20(η2) =

[
−15η22 10
−2 −3η21

]
, A21 =

[
−0.5 −2
1.5 −2

]
, A22 =

[
0.5 2
−1 −1.4

]
B20(η2) =

[
−η22 2
1.5 0

]
, B21 =

[
−1.5 1
1 0.5

]
, B22 =

[
2 2
3 1

]
A30(η3) =

[
−3.5η32 5
−10 −2η31

]
, A31 =

[
−0.5 1.5
−0.5 −1

]
, A32 =

[
2 −0.5
−0.5 −1.5

]
B30(η3) =

[
−2η32 1.5

1 0

]
, B31 =

[
−1 2.5
1 0.75

]
, B32 =

[
2 3
3 2

]
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C = [1 − 1] is the output matrix

u = [1 1]T is the known input

w1(t) = [0.05, 0.02]T sin(10t), w2(t) = [0.1, 0.2]T sin(5t) ,w3(t) =
[0.03, 0.07]T sin(2t)

v(t) = 0.09cos(2t)

The state initial conditions are set as x(0) = [0, 0]T such that :

x(0) ≤ x(0) ≤ x(0)

The measured time varying parameters ηq for q = 1, 2, 3 are defined by:

η1(t) =
(
|sin(t)|+ 2
|cos(2t)|+ 2

)
η2(t) =

(
|2cos(0.8t)|+ 2
|2cos(2t)|+ 2

)
η3(t) =

(
|3sin(3t)|
|3cos(t)|

)
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The Lyapunov matrix is given by:

P =

[
2.50 0
0 3.88

]

The observer gains Lq(ηq) are computed using the expression (7)

L10 =
(
−8.1 6.33

)T
, L11 =

(
21.46 −12.87

)T
, L12 =

(
2.47 −5.28

)T
L20 =

(
21.06 −11.45

)T
, L21 =

(
−5.18 6.31

)T
, L22 =

(
−3.93 −3.83

)T
L30 =

(
19.97 −13.43

)T
, L31 =

(
−4.57 3.87

)T
, L32 =

(
−0.57 0.85

)T
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Figure: Evolution of the switching signal
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Figure: Evolutions of the state x and the estimated upper and lower
bounds x and x .
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Figure: Evolutions of the state x and the estimated upper and lower
bounds x and x (ZOOM).
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Conclusions

An interval state estimation for continuous-time LPV switched
system with polytopic parametric uncertainties has been
developed.

Upper and lower bounds of the state has been determined in
order to guarantee both cooperativity and ISS.

The conservatism has been relaxed thanks to the polytopic
form of parametric uncertainties.
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Thank You For Your Attention
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