

Institute of Systems Engineering Real Time Systems Group

RGB-Laser Odometry Under Interval Uncertainty for Guaranteed Localization

Raphael Voges and Bernardo Wagner

SWIM 2018

https://rts.uni-hannover.de/ https://www.icsens.uni-hannover.de/

DFG Research Training Group (GRK2159) i.c.sens - Integrity and Collaboration in dynamic sensor networks

Introduction

- Urban canyon
- GPS not available
- But many visual features for localization
- Motion estimation not possible with visual features alone
- Estimate ego-motion gradually using camera + laser scanner
- Evaluation using the KITTI dataset [1]

Most approaches [2] focus on computing a point-valued position

- Uncertainty of pose estimation is neglected or modeled stochastically
- Unknown, systematic errors cannot be modeled
- Probabilistic optimization approaches rely on linearization
- Interval analysis overcomes these problems
 - Another advantage: outliers can be identified easily

RΤ.

Modelling Laser Scanner Error Under Interval Uncertainty

- Classical model
- Distance measurement: d
- Angular components: φ and θ
- Computation of Cartesian coordinates
 3D point

Institute of Systems Engineering - Real Time Systems Group

Modelling Laser Scanner Error Under Interval Uncertainty

- Bounded error model
- Interval for distance measurement: [d]
- Interval for angular components: $[\varphi]$ and $[\theta]$
- Computation of Cartesian coordinates
 - 3D interval box

26-Jul-18

Modelling Camera Error Under Interval Uncertainty

RT.

Modelling Camera Error Under Interval Uncertainty

- Hard to model all different error sources (chessboard detector, distortion, ...)
- Interval boxes instead of point-valued feature detections
- Error bounds can be found from calibration process
 - Maximum reprojection error

Modelling IMU Error Under Interval Uncertainty

- Gyroscope data for orientation measurement: angular velocities
- Two sources of error:
 - Bias/noise [b]: offset from 0
 - Scale factor [s]: proportional scaling from measured velocity to true velocity
- Intervals for the velocity measurements: $[\omega](\cdot) = \omega_m(\cdot) + [b] + [s] \cdot \omega_m(\cdot)$
- Integration of velocity to find orientation [ρ](·)
- Interval width increases over time due to drift

- Estimate ego-motion gradually
- Fuse information from camera and laser scanner to find corresponding 3D points
- Find rigid body transformation under interval uncertainty
- Use IMU measurements to constrain motion

General Idea: Keyframe

- Not image to image, but keyframe-based
- Prevents some drift (no unnecessary error propagation)

Motion estimation

RGB-Laser Odometry Under Interval Uncertainty for Guaranteed Localization

Finding and Matching Image Features Between Frames

- Scale-Invariant
 Feature Transform
 (SIFT) [3] to find
 and match image
 features
- Discard wrong matches by using the SIFT ratio test

ISE

RΣ

RT.

Assigning Depth to Image Features

- 1. Interval uncertainty for image feature $i \rightarrow box$ on image plane
- 2. Project laser scan boxes (interval uncertainty) onto image plane
- 3. Find all scan boxes ($s \in S$) that intersect the image feature box *i*
- 4. Depth of *i* is the union over all scan boxes' depths: $[d(i)] = \bigcup_{s \in S} [d(s)]$

RT.

Assigning Depth to Image Features

Feature image color coded by depth/distance (red: close, blue: distant)

Feature image color coded by depth uncertainty (red: certain, blue: uncertain)

RGB-Laser Odometry Under Interval Uncertainty for Guaranteed Localization

Rigid Body Transformation

- $T_3 \ge 0$: moving forward only
- Use IMU rotation measurements to find an initial enclosure for R
- Express *R* using three Euler Angles (\rightarrow six unknowns in total)
 - Three nonlinear equations
 - Forward-backward contractor to contract further
- Linear equations if we try to find twelve unknowns (nine for R + three for T)
 - Linear contractor
 - Additional constraint for rotation matrix: $RR^T = I$
 - Extract Euler Angles from R

ISE

Institute of Systems Engineering - Real Time Systems Group

Rigid Body Transformation

- If depth is unknown for feature in keyframe:
 - Only 2 equations per feature
 - Perspective-n-Point problem
 - Additional constraints in forward-backward contractor
- If depth is completely unknown
 - Only 1 equation per feature
 - Additional constraint in forward-backward contractor

ISE

First Results

- Red dots: true solution
- Blue boxes: Localization boxes
- Green boxes: New keyframe
- GPS at every keyframe to prevent drift

First Results

- Red dots: true solution
- Blue boxes: Localization boxes
- Green boxes: New keyframe
- GPS every three seconds to prevent drift

Conclusions

- 100% of position estimates contain true solution
- Insertion of new keyframe leads to increasing uncertainty
 - No "global" constraints
 - Error that accumulated until keyframe cannot be contracted
- Computation time feasible for future real time applications

_eibniz

Universität Hannover

Future Work

- Improve RGB-Laser odometry by using different contractors
 - Less pessimism
 - Less computation time
- Extend odometry by interval-based GNSS solution
 - Collaboration with Hani Dbouk [4]
 - "Global" contractor
- Extend odometry to SLAM
 - Build map consisting of interval boxes
 - Use map as "global" contractor

- [1] A. Geiger, P. Lenz, C. Stiller and R. Urtasun, Vision meets robotics: The KITTI dataset, The International Journal of Robotics Research, vol. 10, no. 11, pp. 1231–1237, 2013.
- [2] J. Zhang, M. Kaess and S. Singh, Real-time Depth Enhanced Monocular Odometry, IEEE International Conference on Intelligent Robots and Systems (IROS), Chicago, IL, USA, 2014.
- [3] David G. Lowe, Distinctive Image Features from Scale-Invariant Keypoints, International Journal of Computer Vision, vol. 60, pp. 91–110, 2004.
- [4] H. Dbouk and S. Schön, Comparison of Different Bounding Methods for Providing GPS Integrity Information, Proceedings of IEEE/ION PLANS, Monterey, CA, USA, 2018.

This work was supported by the German Research Foundation (DFG) as part of the Research Training Group i.c.sens [RTG 2159].