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Introduction

Reachability analysis is a powerful tool:
P Applies to discrete, continuous, and hybrid systems
» Enables safety verification
» Validated implementations exist (e.g. VNODE, Acumen)

Key-enablers:
» Set-extension is well-defined

» |A provides a computable and correct over-approximation

Problem:

» Engineers describe safety in terms of probabilities and
distributions - not just sets

» Can reachability analysis work in this context?



This Paper

Two key questions
» Does set-extension generalize, for example, to distributions?

» Do extensions also apply naturally to non-deterministic and
probabilistic systems?

Contributions:
> A mathematical framework for answering such questions

» Leveraging the concepts of monads and monad-transformers

Key insights:
» Discrete probability distributions form a monad

» The non-empty power-set constructor can be turned into a
monad-transformer (Caution! Axiom of choice)



Monads

In this work, we will work primarily in the category Set of sets.

Definition (Monad, c.f. Moggi [1])
A monad on the category Set of sets is a triple (M, 7, -*) such that
if X:Set then MX:Set, n:X — MX is a map (from X to MX), if
f:X — MY then f*:MX — MY . Furthermore, 17 and f* satisfy the
following equational axioms for any f:X — MY and g:Y — MZ
1. nx = idux
3. ffopx =f

Trivial examples: The identity MX = X and the terminal monad
MX =1, where 1 is a singleton set.



Monads

Examples:
» Exceptions X + E, where + denotes disjoint union

» Powersets (non-determinism) P(X), where P(X) is the set of
subsets of X, n(x) = {x} and f*(A) = ,.4 f(x); also
P.(X), i.e., P(X) without the empty set, is a monad

» Probability Distributions
D(X) = {p:X — [0, 1] Tyox p(x) = 1},
n(x)(x') =1if x = x" else 0 and
F(R)(y) = Xrox PX) % FA(Y).
An equivalent monad is given by the set D’(X) of measures,
i.e., u:P(X) — [0, 1] such that p(X) =1 and
(Wi Ai) = . 1(A;) for any family (A;li:l) of disjoint
subsets of X. The correspondence between D(X) and D’(X)
is 1(A) = >_.aP(x) and p(x) = u({x}).



Interval for Probability Distributions

The natural order on [0, 1] induces a point-wise order on the
function space X — [0, 1]. This allows to introduce interval
notations for subsets of probability distributions in D(X), for
instance

[t ] = {p:D(X)[¥x.0(x) < p(x) < u(x)}

where £, u:X — [0,1] (not necessarily in D(X)).

Another notation is

[L, U] = {p:D(X)]¥(A, €a):L.la < p(A) A (B, up):U.p(B) < ug}

where L, U:(P(X),[0,1])* are finite sequences and p is extended
additively to subsets of X, namely p(A) = >, .4 p(x).



M-Extension

The natural set-extension of f:X — Y is the map
P(f):P(X) — P(Y) such that P(f)(A) = {f(x)|x:A}.

It satisfies P(f)({x}) = {f(x)}, that is it is an extension of f.

Generalizes to any monad, and hinges on the fact that a monad is
also a functor:
Definition (Functor)

A functor F on Set maps a set X to a set F(X), and f:X — Y to
F(f):F(X) — F(Y) so that

1. F(idx) = idrx)

2. F(gof)=F(g)oF(f)



M-Extension

We will also need just one more (standard) concept:

Definition (Natural Transformation)

A natural transformation 7 from a functor F to a functor G is a
family of maps 7x:F(X) — G(X) indexed by X:Set such that for
any f:X — Y we have 7y o F(f) = G(f) o 7x.

Prop (M-extension)

A monad becomes a functor by defining M(f) = (ny o f)* for
f:X =Y, and nx:X — M(X) becomes a natural transformation
from the identity functor to M, i.e., (Mf)(nx(x)) = ny(f(x)).

When M is the powerset monad P, one recovers as a special case
the natural set-extension.

For almost every monad on Set the map 7x is injective, thus one
can view X as a subset of M(X) and M(f) as an extension of f.



Application - Approximating Distributions

Given an approximation F of a function f:X — Y and a lower
approximation L of a distribution p:D’(X), we want to compute an
approximation [L', U'] of i/ = D'(f)(p):D'(Y).

To define the algorithm that solves this problem we must first
specify the type of approximations involved and the properties that
they must satisfy.

Recall that the set-extension of f:X — Y is the map
P(f):P(X) — P(Y) such that P(f)(A) = {f(x)|x:A}, and that
w = D'(f)(u) means that p/(B) = u(f~(B)).



Application - Approximating Distributions

Inputs: An approximation F of f, namely a map F:P(X) — P(Y)
such that VA:P(X).P(f)(A) C F(A).

A lower approximation L = [(A;, ¢;)|i:n] of p, i.e., Vi:n.l; < u(A;),
with (Aj|i:n) partition of X (thus >, ¢; <1).

Output: An approximation [L', U'] of p/ = (D'f)(1), namely two
sequences L', U":(P(Y) x [0,1])* such that V(B',/"):L".I' < u/(B’)
and V(B', /" ):U".1/(B") < .



Application - Approximating Distributions

For convenience, we identify a natural number n with the set
{i|i < n} of its predecessors.

Algorithm:

1. For I Cn, let Ay =W A, 4 = Zi:lﬁi and uy =1 — Yy,
where /¢ C n — | is the complement of /. (Note:
¢; < u(Ay) < uy holds by the assumption on L, in other words
from the lower approximation L we compute its completion
[L7, U?], where L7 = [(A},¢;)|] € n] and
U? = [(As, u)|l C n], which approximates the same
probability distributions, but more explicitly.)

2. Let By = F(A)). (Note: Since f(A;) C F(A;) = B; we have
A C f~Y(By). Thus, ¢; < i/(By). Furthermore, p/(Bf) < uje,
as FY(Bf) = (F1(B)))¢ C AS = Aje.)

3. U'=[(B,¢))|l € n]and U = [(Bf,u)|l C n].



Monad Transformers

Many of the things we care about in this work are monads. A key
question, then, is whether they compose.

If M and M’ are monads, then M’ o M is a functor,

Myx © 1x: X — M'(MX) is a natural transformation, but there is
no canonical way to define f* for f:X — M'(MY).

Unlike monads, monad transformers can be composed.

Definition (Monad Morphism)
A monad morphism is a natural transformation ¢ from a monad M
to a monad M’ such that :

nx(x) = ox(nx(x))  (oy o) (ox(c)) = av(f(c))



Monad Transformers

We write Mon for the category of monads and monad morphisms.

Definition (Monad Transformer)

A monad transformer consists of a functor T on Mon and a
natural transformation n,:M — T(M) from the identity functor
on Monto T.

Prop
If M is a monad, then M(_+ E) and P.(M(.)) are monads.

Hint Given F:X — PL(MY), let MNx:X.F(x) be the set of choice
maps f st Vx:X.f(x):F(x), then
F*(A) = {f*(c)|c:AN F:Mx:X.F(x)}.

Proving that F* satisfies the axioms for monads uses crucially the
axiom of choice.



(Main) Related Work

Weichselberger [2] (Def 2.2) introduces R-probabilities, namely a
pair of maps L and U from a o-algebra (called o-field in [2]) A on
a sample space 2, which bound the probability distributions on €,
namely YA: A.L(A) < p(A) < U(A).

In this paper we work in a simplified setting: the space € is a set
X, the o-algebra A is the powerset P(X), L and U are finite
sequences L = [(A;, ¢;)|i:m] and U = [(B;, uj)|j:n] representing
maps L', U":P(X) — [0,1], namely L'(A) = ¢; when A = A;
otherwise 0, and U'(B) = uj when B = B; otherwise 1.



Conclusions

Specifics
> Set-extension generalizes to (discrete) distributions, and, in
fact, to any monad

> Extensions apply at least to non-deterministic systems

More broadly

> Monads facilitate establishing well-definedness of extensions

Future work
» Applying to CDFs on the reals

» Establishing connection to existing implmenetation
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