
Safe Approximation of Probabilities

Eugenio Moggi (University of Genova)
Walid Taha (Halmstad University)

July 26, 2018, Rostock, Germany

Introduction

Reachability analysis is a powerful tool:

I Applies to discrete, continuous, and hybrid systems

I Enables safety verification

I Validated implementations exist (e.g. VNODE, Acumen)

Key-enablers:

I Set-extension is well-defined

I IA provides a computable and correct over-approximation

Problem:

I Engineers describe safety in terms of probabilities and
distributions - not just sets

I Can reachability analysis work in this context?

This Paper

Two key questions

I Does set-extension generalize, for example, to distributions?

I Do extensions also apply naturally to non-deterministic and
probabilistic systems?

Contributions:

I A mathematical framework for answering such questions

I Leveraging the concepts of monads and monad-transformers

Key insights:

I Discrete probability distributions form a monad

I The non-empty power-set constructor can be turned into a
monad-transformer (Caution! Axiom of choice)

Monads

In this work, we will work primarily in the category Set of sets.

Definition (Monad, c.f. Moggi [1])

A monad on the category Set of sets is a triple (M, η, ∗) such that
if X :Set then MX :Set, η:X → MX is a map (from X to MX), if
f :X → MY then f ∗:MX → MY . Furthermore, η and f ∗ satisfy the
following equational axioms for any f :X → MY and g :Y → MZ

1. η∗X = idMX

2. (g∗ ◦ f)∗ = g∗ ◦ f ∗

3. f ∗ ◦ ηX = f

Trivial examples: The identity MX = X and the terminal monad
MX = 1, where 1 is a singleton set.

Monads

Examples:

I Exceptions X + E , where + denotes disjoint union

I Powersets (non-determinism) P(X), where P(X) is the set of
subsets of X , η(x) = {x} and f ∗(A) =

⋃
x :A f (x); also

P+(X), i.e., P(X) without the empty set, is a monad

I Probability Distributions
D(X) = {p:X → [0, 1]|

∑
x :X p(x) = 1},

η(x)(x ′) = 1 if x = x ′ else 0 and
f ∗(p)(y) =

∑
x :X p(x) ∗ f (x)(y).

An equivalent monad is given by the set D ′(X) of measures,
i.e., µ:P(X)→ [0, 1] such that µ(X) = 1 and
µ(]i :IAi) =

∑
i :I µ(Ai) for any family (Ai |i :I) of disjoint

subsets of X . The correspondence between D(X) and D ′(X)
is µ(A) =

∑
x :A p(x) and p(x) = µ({x}).

Interval for Probability Distributions

The natural order on [0, 1] induces a point-wise order on the
function space X → [0, 1]. This allows to introduce interval
notations for subsets of probability distributions in D(X), for
instance

[`, u] = {p:D(X)|∀x .`(x) ≤ p(x) ≤ u(x)}

where `, u:X → [0, 1] (not necessarily in D(X)).

Another notation is

[L,U] = {p:D(X)|∀(A, `A):L.`A ≤ p(A) ∧ ∀(B, uB):U.p(B) ≤ uB}

where L,U:(P(X), [0, 1])∗ are finite sequences and p is extended
additively to subsets of X , namely p(A) =

∑
x :A p(x).

M-Extension

The natural set-extension of f :X → Y is the map
P(f):P(X)→ P(Y) such that P(f)(A) = {f (x)|x :A}.

It satisfies P(f)({x}) = {f (x)}, that is it is an extension of f .

Generalizes to any monad, and hinges on the fact that a monad is
also a functor:

Definition (Functor)

A functor F on Set maps a set X to a set F (X), and f :X → Y to
F (f):F (X)→ F (Y) so that

1. F (idX) = idF (X)

2. F (g ◦ f) = F (g) ◦ F (f)

M-Extension

We will also need just one more (standard) concept:

Definition (Natural Transformation)

A natural transformation τ from a functor F to a functor G is a
family of maps τX :F (X)→ G (X) indexed by X :Set such that for
any f :X → Y we have τY ◦ F (f) = G (f) ◦ τX .

Prop (M-extension)

A monad becomes a functor by defining M(f) = (ηY ◦ f)∗ for
f :X → Y , and ηX :X → M(X) becomes a natural transformation
from the identity functor to M, i.e., (Mf)(ηX (x)) = ηY (f (x)).

When M is the powerset monad P, one recovers as a special case
the natural set-extension.

For almost every monad on Set the map ηX is injective, thus one
can view X as a subset of M(X) and M(f) as an extension of f .

Application - Approximating Distributions

Given an approximation F of a function f :X → Y and a lower
approximation L of a distribution µ:D ′(X), we want to compute an
approximation [L′,U ′] of µ′ = D ′(f)(µ):D ′(Y).

To define the algorithm that solves this problem we must first
specify the type of approximations involved and the properties that
they must satisfy.

Recall that the set-extension of f :X → Y is the map
P(f):P(X)→ P(Y) such that P(f)(A) = {f (x)|x :A}, and that
µ′ = D ′(f)(µ) means that µ′(B) = µ(f −1(B)).

Application - Approximating Distributions

Inputs: An approximation F of f , namely a map F :P(X)→ P(Y)
such that ∀A:P(X).P(f)(A) ⊆ F (A).

A lower approximation L = [(Ai , `i)|i :n] of µ, i.e., ∀i :n.`i ≤ µ(Ai),
with (Ai |i :n) partition of X (thus

∑
i :n `i ≤ 1).

Output: An approximation [L′,U ′] of µ′ = (D ′f)(µ), namely two
sequences L′,U ′:(P(Y)× [0, 1])∗ such that ∀(B ′, l ′):L′.l ′ ≤ µ′(B ′)
and ∀(B ′, u′):U ′.µ′(B ′) ≤ u′.

Application - Approximating Distributions

For convenience, we identify a natural number n with the set
{i |i < n} of its predecessors.

Algorithm:

1. For I ⊆ n, let AI =]i :IAi , `I =
∑

i :I `i and uI = 1− `I c ,
where I c ⊆ n − I is the complement of I . (Note:
`I ≤ µ(AI) ≤ uI holds by the assumption on L, in other words
from the lower approximation L we compute its completion
[Lσ,Uσ], where Lσ = [(AI , `I)|I ⊆ n] and
Uσ = [(AI , uI)|I ⊆ n], which approximates the same
probability distributions, but more explicitly.)

2. Let BI = F (AI). (Note: Since f (AI) ⊆ F (AI) = BI we have
AI ⊆ f −1(BI). Thus, `I ≤ µ′(BI). Furthermore, µ′(Bc

I) ≤ uI c ,
as f −1(Bc

I) = (f −1(BI))c ⊆ Ac
I = AI c .)

3. L′ = [(BI , `I)|I ⊆ n] and U ′ = [(Bc
I , uI c)|I ⊆ n].

Monad Transformers

Many of the things we care about in this work are monads. A key
question, then, is whether they compose.

If M and M ′ are monads, then M ′ ◦M is a functor,
η′MX ◦ ηX :X → M ′(MX) is a natural transformation, but there is
no canonical way to define f ∗ for f :X → M ′(MY).
Unlike monads, monad transformers can be composed.

Definition (Monad Morphism)

A monad morphism is a natural transformation σ from a monad M
to a monad M ′ such that :

η′X (x) = σX (ηX (x)) (σY ◦ f)∗
′
(σX (c)) = σY (f ∗(c))

Monad Transformers

We write Mon for the category of monads and monad morphisms.

Definition (Monad Transformer)

A monad transformer consists of a functor T on Mon and a
natural transformation ηTM :M → T (M) from the identity functor
on Mon to T .

Prop

If M is a monad, then M(+ E) and P+(M()) are monads.

Hint Given F :X → P+(MY), let Πx :X .F (x) be the set of choice
maps f st ∀x :X .f (x):F (x), then
F ∗(A) = {f ∗(c)|c:A ∧ f :Πx :X .F (x)}.

Proving that F ∗ satisfies the axioms for monads uses crucially the
axiom of choice.

(Main) Related Work

Weichselberger [2] (Def 2.2) introduces R-probabilities, namely a
pair of maps L and U from a σ-algebra (called σ-field in [2]) A on
a sample space Ω, which bound the probability distributions on Ω,
namely ∀A:A.L(A) ≤ p(A) ≤ U(A).

In this paper we work in a simplified setting: the space Ω is a set
X , the σ-algebra A is the powerset P(X), L and U are finite
sequences L = [(Ai , `i)|i :m] and U = [(Bj , uj)|j :n] representing
maps L′,U ′:P(X)→ [0, 1], namely L′(A) = `i when A = Ai

otherwise 0, and U ′(B) = uj when B = Bj otherwise 1.

Conclusions

Specifics

I Set-extension generalizes to (discrete) distributions, and, in
fact, to any monad

I Extensions apply at least to non-deterministic systems

More broadly

I Monads facilitate establishing well-definedness of extensions

Future work

I Applying to CDFs on the reals

I Establishing connection to existing implmenetation

Support: KK Foundation, ELLIIT network, and an US NSF (CPS)

