Safe Approximation of Probabilities

Eugenio Moggi (University of Genova) Walid Taha (Halmstad University)

July 26, 2018, Rostock, Germany

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Introduction

Reachability analysis is a powerful tool:

- Applies to discrete, continuous, and hybrid systems
- Enables safety verification
- Validated implementations exist (e.g. VNODE, Acumen)

Key-enablers:

- Set-extension is well-defined
- IA provides a computable and correct over-approximation

Problem:

 Engineers describe safety in terms of probabilities and distributions - not just sets

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Can reachability analysis work in this context?

This Paper

Two key questions

- Does set-extension generalize, for example, to distributions?
- Do extensions also apply naturally to non-deterministic and probabilistic systems?

Contributions:

- ► A mathematical framework for answering such questions
- Leveraging the concepts of monads and monad-transformers

Key insights:

- Discrete probability distributions form a monad
- The non-empty power-set constructor can be turned into a monad-transformer (Caution! Axiom of choice)

Monads

In this work, we will work primarily in the category Set of sets.

Definition (Monad, c.f. Moggi [1])

f*

A monad on the category Set of sets is a triple $(M, \eta, _^*)$ such that if X:Set then MX:Set, $\eta: X \to MX$ is a map (from X to MX), if $f: X \to MY$ then $f^*: MX \to MY$. Furthermore, η and f^* satisfy the following equational axioms for any $f: X \to MY$ and $g: Y \to MZ$

1.
$$\eta_X^* = id_{MX}$$

2. $(g^* \circ f)^* = g^* \circ$
3. $f^* \circ \eta_X = f$

Trivial examples: The identity MX = X and the terminal monad MX = 1, where 1 is a singleton set.

Monads

Examples:

- Exceptions X + E, where + denotes disjoint union
- Powersets (non-determinism) P(X), where P(X) is the set of subsets of X, η(x) = {x} and f*(A) = ⋃_{x:A} f(x); also P₊(X), i.e., P(X) without the empty set, is a monad
- ▶ Probability Distributions $D(X) = \{p: X \to [0, 1] | \sum_{x:X} p(x) = 1\},$ $\eta(x)(x') = 1 \text{ if } x = x' \text{ else 0 and}$ $f^*(p)(y) = \sum_{x:X} p(x) * f(x)(y).$ An equivalent monad is given by the set D'(X) of measures, i.e., $\mu: P(X) \to [0, 1]$ such that $\mu(X) = 1$ and $\mu(\uplus_{i:I}A_i) = \sum_{i:I} \mu(A_i) \text{ for any family } (A_i|i:I) \text{ of disjoint}$ subsets of X. The correspondence between D(X) and D'(X) is $\mu(A) = \sum_{x:A} p(x)$ and $p(x) = \mu(\{x\}).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Interval for Probability Distributions

The natural order on [0, 1] induces a point-wise order on the function space $X \rightarrow [0, 1]$. This allows to introduce interval notations for subsets of probability distributions in D(X), for instance

$$[\ell, u] = \{p: D(X) | \forall x. \ell(x) \le p(x) \le u(x)\}$$

where $\ell, u: X \to [0, 1]$ (not necessarily in D(X)).

Another notation is

 $[L, U] = \{ p: D(X) | \forall (A, \ell_A) : L.\ell_A \le p(A) \land \forall (B, u_B) : U.p(B) \le u_B \}$

where $L, U:(P(X), [0, 1])^*$ are finite sequences and p is extended additively to subsets of X, namely $p(A) = \sum_{x:A} p(x)$.

M-Extension

The natural set-extension of $f: X \to Y$ is the map $P(f):P(X) \to P(Y)$ such that $P(f)(A) = \{f(x)|x:A\}$.

It satisfies $P(f)({x}) = {f(x)}$, that is it is an extension of f.

Generalizes to any monad, and hinges on the fact that a monad is also a functor:

Definition (Functor)

A functor F on Set maps a set X to a set F(X), and $f: X \to Y$ to $F(f): F(X) \to F(Y)$ so that

1.
$$F(id_X) = id_{F(X)}$$

$$2. \ F(g \circ f) = F(g) \circ F(f)$$

M-Extension

We will also need just one more (standard) concept:

Definition (Natural Transformation)

A natural transformation τ from a functor F to a functor G is a family of maps $\tau_X:F(X) \to G(X)$ indexed by X:Set such that for any $f:X \to Y$ we have $\tau_Y \circ F(f) = G(f) \circ \tau_X$.

Prop (M-extension)

A monad becomes a functor by defining $M(f) = (\eta_Y \circ f)^*$ for $f:X \to Y$, and $\eta_X:X \to M(X)$ becomes a natural transformation from the identity functor to M, i.e., $(Mf)(\eta_X(x)) = \eta_Y(f(x))$.

When M is the powerset monad P, one recovers as a special case the natural set-extension.

For almost every monad on Set the map η_X is injective, thus one can view X as a subset of M(X) and M(f) as an extension of f.

Application - Approximating Distributions

Given an approximation F of a function $f: X \to Y$ and a lower approximation L of a distribution $\mu:D'(X)$, we want to compute an approximation [L', U'] of $\mu' = D'(f)(\mu):D'(Y)$.

To define the algorithm that solves this problem we must first specify the type of approximations involved and the properties that they must satisfy.

Recall that the set-extension of $f: X \to Y$ is the map $P(f):P(X) \to P(Y)$ such that $P(f)(A) = \{f(x)|x:A\}$, and that $\mu' = D'(f)(\mu)$ means that $\mu'(B) = \mu(f^{-1}(B))$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Application - Approximating Distributions

Inputs: An approximation F of f, namely a map $F:P(X) \to P(Y)$ such that $\forall A:P(X).P(f)(A) \subseteq F(A)$.

A lower approximation $L = [(A_i, \ell_i)|i:n]$ of μ , i.e., $\forall i:n.\ell_i \leq \mu(A_i)$, with $(A_i|i:n)$ partition of X (thus $\sum_{i:n} \ell_i \leq 1$).

Output: An approximation [L', U'] of $\mu' = (D'f)(\mu)$, namely two sequences $L', U': (P(Y) \times [0, 1])^*$ such that $\forall (B', l'): L'.l' \leq \mu'(B')$ and $\forall (B', u'): U'.\mu'(B') \leq u'$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Application - Approximating Distributions

For convenience, we identify a natural number n with the set $\{i | i < n\}$ of its predecessors.

Algorithm:

1. For $I \subseteq n$, let $A_I = \bigoplus_{i:I} A_i$, $\ell_I = \sum_{i:I} \ell_i$ and $u_I = 1 - \ell_{I^c}$, where $I^c \subseteq n - I$ is the complement of I. (Note: $\ell_I \leq \mu(A_I) \leq u_I$ holds by the assumption on L, in other words from the lower approximation L we compute its *completion* $[L^{\sigma}, U^{\sigma}]$, where $L^{\sigma} = [(A_I, \ell_I) | I \subseteq n]$ and $U^{\sigma} = [(A_I, u_I) | I \subseteq n]$, which approximates the same probability distributions, but more explicitly.)

2. Let
$$B_I = F(A_I)$$
. (Note: Since $f(A_I) \subseteq F(A_I) = B_I$ we have $A_I \subseteq f^{-1}(B_I)$. Thus, $\ell_I \leq \mu'(B_I)$. Furthermore, $\mu'(B_I^c) \leq u_{I^c}$, as $f^{-1}(B_I^c) = (f^{-1}(B_I))^c \subseteq A_I^c = A_{I^c}$.)

3. $L' = [(B_I, \ell_I) | I \subseteq n]$ and $U' = [(B_I^c, u_{I^c}) | I \subseteq n]$.

Monad Transformers

Many of the things we care about in this work are monads. A key question, then, is whether they compose.

If M and M' are monads, then $M' \circ M$ is a functor, $\eta'_{MX} \circ \eta_X : X \to M'(MX)$ is a natural transformation, but there is no canonical way to define f^* for $f: X \to M'(MY)$. Unlike monads, monad transformers can be composed.

Definition (Monad Morphism)

A monad morphism is a natural transformation σ from a monad M to a monad M' such that :

$$\eta'_X(x) = \sigma_X(\eta_X(x)) \qquad (\sigma_Y \circ f)^{*'}(\sigma_X(c)) = \sigma_Y(f^*(c))$$

Monad Transformers

We write Mon for the category of monads and monad morphisms.

Definition (Monad Transformer)

A monad transformer consists of a functor T on Mon and a natural transformation $\eta_M^T: M \to T(M)$ from the identity functor on Mon to T.

Prop

If M is a monad, then $M(_{-}+E)$ and $P_{+}(M(_{-}))$ are monads.

Hint Given $F: X \to P_+(MY)$, let $\Pi x: X.F(x)$ be the set of *choice* maps f st $\forall x: X.f(x):F(x)$, then $F^*(A) = \{f^*(c) | c: A \land f: \Pi x: X.F(x)\}.$

Proving that F^* satisfies the axioms for monads uses crucially the axiom of choice.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Weichselberger [2] (Def 2.2) introduces *R*-probabilities, namely a pair of maps *L* and *U* from a σ -algebra (called σ -field in [2]) A on a sample space Ω , which bound the probability distributions on Ω , namely $\forall A: A.L(A) \leq p(A) \leq U(A)$.

In this paper we work in a simplified setting: the space Ω is a set X, the σ -algebra \mathcal{A} is the powerset P(X), L and U are finite sequences $L = [(A_i, \ell_i)|i:m]$ and $U = [(B_j, u_j)|j:n]$ representing maps $L', U':P(X) \rightarrow [0, 1]$, namely $L'(A) = \ell_i$ when $A = A_i$ otherwise 0, and $U'(B) = u_j$ when $B = B_j$ otherwise 1.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Conclusions

Specifics

- Set-extension generalizes to (discrete) distributions, and, in fact, to any monad
- Extensions apply at least to non-deterministic systems

More broadly

Monads facilitate establishing well-definedness of extensions

Future work

- Applying to CDFs on the reals
- Establishing connection to existing implmenetation

Support: KK Foundation, ELLIIT network, and an US NSF (CPS)

- ロ ト - 4 回 ト - 4 □