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Cooperative and Positive Dynamic Systems

Simplified computation of state enclosures for cooperative systems

Sufficient condition for cooperativity of the dynamic system

ẋ(t) = f (x(t)) , x ∈ Rnx

Ji,j ≥ 0 , i, j ∈ {1, . . . , nx} , i 6= j with J =
∂f (x)

∂x

For initial conditions in the positive orthant

Rnx
+ = {x ∈ Rnx | xi ≥ 0 ∀i ∈ {1, . . . , nx}} ,

positivity of all state trajectories is ensured if

ẋi(t) = fi (x1(t), . . . , xi−1(t), 0, xi+1(t), . . . xnx(t)) ≥ 0

holds for all components i ∈ {1, . . . , nx}
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Special Case: Linear Cooperative System with Uncertain
Initial States

Interval-based representation of uncertain initial conditions

x(0) ∈ [x0] = [x] (0) =

 [x1(0) ; x1(0)]
...[

xnx
(0) ; xnx(0)

]
 with x0 ∈ Rnx

+

Decoupled bounding systems, A: Metzler matrix

A · v(t) + B · u(t) = v̇(t) ≤ ẋ(t) ≤ ẇ(t) = A ·w(t) + B · u(t)

with the element-wise non-negative inputs B · u(t)

Guaranteed state enclosures x(t) ∈ [v(t) ; w(t)]

v(0) = x0 and w(0) = x0
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Example: Spatially Distributed Heating System

Experimental setup

inlet: air canal

outlet:
air canal

temperature
measurements in
the air canal

Identification of parameters for heat convection, heat conduction, and
thermal air canal properties, cf. Mathmod 2018, Vienna, Austria

Peltier elements as control inputs
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Example: Spatially Distributed Heating System

Early lumping: Finite volume semi-discretization

inlet: air canal

outlet:
air canal

temperature
measurements in
the air canal

Differential equation for the rod temperature

ϑ̇i(t) =
1

ci ·mi
·
(
Q̇λ,ii−1(t) + Q̇λ,ii+1(t) + Q̇α,iB (t) + Q̇α,i

Ñ+i
(t) + ũi(t)

)
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Example: Spatially Distributed Heating System

Early lumping: Finite volume semi-discretization

Differential equation for the rod temperature

ϑ̇i(t) =
1

ci ·mi
·
(
Q̇λ,ii−1(t) + Q̇λ,ii+1(t) + Q̇α,iB (t) + Q̇α,i

Ñ+i
(t) + ũi(t)

)
with ũi(t) =

1

2M + 1
uξ(t) , ξ =

⌈
i

2M + 1

⌉
, i ∈ {1, . . . , Ñ}

Heat conduction between neighboring elements

Q̇λ,ii−1(t) = λR ·
Ac

ls
· (ϑi−1(t)− ϑi(t))

Heat convection between rod and air canal

Q̇α,i
Ñ+i

(t) = α ·As ·
(
ϑÑ+i(t)− ϑi(t)

)
= −Q̇α,Ñ+i

i (t)
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Definition of Point-Valued Bounding Systems

Decoupled bounding systems, A
(
p
)
∈ [A (p) ; A (p)]: uncertain

Metzler matrix

A
(
p
)
· v(t) + B · u(t) = v̇(t) ≤ ẋ(t) ≤ ẇ(t) = A (p) ·w(t) + B · u(t)

with the parameter intervals α ∈ [α ; α], αB ∈ [αB ; αB], αT ∈ [αT ; αT],
∆α ∈

[
∆α ; ∆α

]
, ∆ma ∈

[
∆ma ; ∆ma

]
, and λR ∈

[
λR ; λR

]
Block-wise definition of the system matrix

A(p) =

[
A〈11〉(p) A〈12〉(p)

A〈21〉(p) A〈22〉(p)

]
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Uncertain Cooperative System Model (1)

Block-wise definition of the system matrix

A(p) =

[
A〈11〉(p) A〈12〉(p)

A〈21〉(p) A〈22〉(p)

]

Example for the parameter-dependent matrix entries

a
〈11〉
i,j (p) =



p1
ci·mi < 0 for i = j = 1 and i = j = Ñ
p2

ci·mi > 0 for i = j − 1 , j ∈ {2, . . . , Ñ}
p2

ci·mi > 0 for i = j + 1 , j ∈ {1, . . . , Ñ − 1}
p3

ci·mi < 0 for i = j , j ∈ {2, . . . , Ñ}
0 else
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Uncertain Cooperative System Model (2)

Block-wise definition of the system matrix

A(p) =

[
A〈11〉(p) A〈12〉(p)

A〈21〉(p) A〈22〉(p)

]

Parameterization of the lower bounding system

p =



−
(
λR · Ac

ls
+ (αB + α) ·As

)
λR · Ac

ls

−
(

2λR · Ac
ls

+ (αB + α) ·As

)
α ·As

−
(
αT + α+ ∆α · δÑ+i,Ñ+1

)
·As(

ma

Ñ
·
(

1 + δÑ+i,2Ñ ·∆ma

))−1
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Uncertain Cooperative System Model (3)

Block-wise definition of the system matrix

A(p) =

[
A〈11〉(p) A〈12〉(p)

A〈21〉(p) A〈22〉(p)

]

Parameterization of the upper bounding system

p =



−
(
λR · Ac

ls
+ (αB + α) ·As

)
λR · Ac

ls

−
(

2λR · Ac
ls

+ (αB + α) ·As

)
α ·As

−
(
αT + α+ ∆α · δÑ+i,Ñ+1

)
·As(

ma

Ñ
·
(

1 + δÑ+i,2Ñ ·∆ma

))−1
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Uncertain Cooperative System Model (4)

Block-wise definition of the system matrix

A(p) =

[
A〈11〉(p) A〈12〉(p)

A〈21〉(p) A〈22〉(p)

]

Example for the sign pattern in the system matrix A(p) for M = 0

A(p) =



− + 0 0 + 0 0 0
+ − + 0 0 + 0 0
0 + − + 0 0 + 0
0 0 + − 0 0 0 +

+ 0 0 0 − 0 0 0
0 + 0 0 0 − 0 0
0 0 + 0 0 0 − 0
0 0 0 + 0 0 0 −
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Interval Observer Design

Decoupled bounding systems

AO

(
p
)
·v̂(t)+B·u(t)+Hy

m
(t) ≤ ˙̂x(t) ≤ AO(p)·ŵ(t)+B·u(t)+Hym(t)

with the observer system matrix

AO(p) = A (p)−HC = A (p)−H

Requirements for admissible observer parameterizations

1 Guarantee of asymptotic stability

2 Preservation of cooperativity

3 Robustness and optimality?
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Interval Observer Design

Decoupled bounding systems

AO

(
p
)
·v̂(t)+B·u(t)+Hy

m
(t) ≤ ˙̂x(t) ≤ AO(p)·ŵ(t)+B·u(t)+Hym(t)

with the observer system matrix

AO(p) = A (p)−HC = A (p)−H

Guaranteed stabilizing, cooperativity preserving parameterization

H = κCT with κ > 0

leading to

H = HC = κCTC with Hi,j =


κ for i = j = (ξ · (2M + 1)−M) ,

ξ ∈ {1, . . . , N}
κ for i = j , j ∈ {Ñ + 1, 2Ñ}
0 else

A. Rauh et al.: State Estimation and Control Design for Cooperative Dynamic Systems 12/24



Cooperative Systems Benchmark Application Interval Observer Results Interval-Based Control Conclusions

Interval Observer Design

Decoupled bounding systems

AO

(
p
)
·v̂(t)+B·u(t)+Hy

m
(t) ≤ ˙̂x(t) ≤ AO(p)·ŵ(t)+B·u(t)+Hym(t)

with the observer system matrix

AO(p) = A (p)−HC = A (p)−H

Note

Advantage: Trivial stability proof by means of the Gershgorin circle
theorem

However: What is the optimal choice for the parameter κ?

Are there other, not straightforward, parameterizations that may lead
to better performance?
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Optimization of the Observer Gain Matrix (1)

Gain matrix H without any structural restrictions except for
cooperativity

Definition of the error vector between the estimated and true lower
and upper state bounds

e =
[
(v̂ − v)T (ŵ −w)T

]T
Error dynamics

ė =

[
A
(
p
)
−HC 0

0 A(p)−HC

]
e +

[
H
H

]
ζ

Note

In the case of a description of the feasible parameter domains by multiple
subintervals [pi], i ∈ {1, . . . , L}, the complete state domains are described
by the interval union over all respective interval-valued state estimates
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Optimization of the Observer Gain Matrix (1)

Gain matrix H without any structural restrictions except for
cooperativity

Definition of the error vector between the estimated and true lower
and upper state bounds

e =
[
(v̂ − v)T (ŵ −w)T

]T
Augmented system output

y∞ =

[
0(N+2)×Ñ 0(N+2)×Ñ
−ν · IÑ×Ñ ν · IÑ×Ñ

]
e +

[
I(N+2)×(N+2)

0Ñ×(N+2)

]
ζ

= C∞e + D∞1ζ

=⇒ Comparison of the measurement errors ζ with the weighted
diameter (ŵ −w)− (v̂ − v), corresponding parameter ν > 0

Note

In the case of a description of the feasible parameter domains by multiple
subintervals [pi], i ∈ {1, . . . , L}, the complete state domains are described
by the interval union over all respective interval-valued state estimates
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Optimization of the Observer Gain Matrix (1)

Gain matrix H without any structural restrictions except for
cooperativity

LMI-based optimization problem with

L (Θ) :=

 Θ H POCT
∞

HT −I DT
∞1

C∞PO D∞1 −γ2
∞,OI

 ≺ 0 with Θ ∈ {Θ,Θ}

for the two extremal systems

Θ := AO

(
p
)
·PO + PO ·AT

O

(
p
)

Θ := AO(p) ·PO + PO ·AT
O(p)

Lyapunov function candidate to ensure robust stability PO = PT
O � 0

H∞ optimization problem by minimization of γ∞,O > 0

Note

In the case of a description of the feasible parameter domains by multiple
subintervals [pi], i ∈ {1, . . . , L}, the complete state domains are described
by the interval union over all respective interval-valued state estimates
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Optimization of the Observer Gain Matrix (1)

Gain matrix H without any structural restrictions except for
cooperativity

Linearizing change of variables

QO = QT
O = P−1

O � 0 with YT
O = QOH = P−1

O H

Minimization of µ∞,O := γ2
∞,O > 0 under consideration of

M (Σ) :=

 Σ YT
O CT

∞
YO −I DT

∞1

C∞ D∞1 −µ∞,OI

 ≺ 0 with Σ ∈ {Σ,Σ}

for the extremal systems

Σ := QOA
(
p
)
−YT

OC + AT
(
p
)
QO −CTYO

Σ := QOA(p)−YT
OC + AT(p) QO −CTYO

Note

In the case of a description of the feasible parameter domains by multiple
subintervals [pi], i ∈ {1, . . . , L}, the complete state domains are described
by the interval union over all respective interval-valued state estimates
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Optimization of the Observer Gain Matrix (1)

Gain matrix H without any structural restrictions except for
cooperativity

Iterative solution procedure ensuring cooperativity

col
((

A(p)− Q̌−1
O YT

OC
)
◦ (E− I)

)
≥ 0

for both p ∈ {p,p} with ◦ denoting the element-wise defined
Hadamard product of two matrices with identical dimensions

Note

In the case of a description of the feasible parameter domains by multiple
subintervals [pi], i ∈ {1, . . . , L}, the complete state domains are described
by the interval union over all respective interval-valued state estimates
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Optimization of the Observer Gain Matrix (2)

Obviously cooperativity-preserving structure

H = (KC)T with K = diag {κ} and

κ =
[
κ1 . . . κN+2

]
, κi > 0 , i ∈ {1, . . . , N + 2}

Advantage

Reduced number of computational operations during the application of the
observer due to the sparse structure of the gain matrix H

Yet an even simpler version

H = (KC)T with K = diag {κ} and

κ =
[
κ1 . . . κN+2

]
, κ1 = . . . = κN+2 > 0
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Experimental Results for Verified Parameter Identification

Measurement uncertainty: [−0.75 ; 0.75] K

Sampling time: 1 s

Control signals u(t) of all
Peltier elements

u
i(
t)

in
W

t in s

0
0

5

10

15

1200400200 600 800 1000

u1(t)

u2(t)

u3(t)

u4(t)

Measured rod temperatures
(segment midpoints)

y m
,i
(t
)
in

K

t in s

0
0

1200400200 600 800 1000

10

20

30

ym,1(t)

ym,2(t)

ym,3(t)

ym,4(t)
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Experimental Results for Verified Parameter Identification

Offline parameter identification: Average diameter of the rod temperature
intervals 6.86 K, corresponding to H = 0

Lower bounds vi(t)

t in
10 3

s x in m

v i
(t
)
in

K

1.0
0.5

0
0 0.1 0.2 0.3

30

20

10

0

Upper bounds wi(t)

t in
10 3

s x in m

w
i(
t)

in
K

1.0
0.5

0
0 0.1 0.2 0.3

30

20

10

0
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Experimental Results for the Observer Application

Online state observation: Average diameter of rod temperature intervals
3.90 K, full gain matrix H 6= 0

Lower bounds v̂i(t)

t in
10 3

s x in m

v̂ i
(t
)
in

K

1.0
0.5

0
0 0.1 0.2 0.3

30

20

10

0

Upper bounds ŵi(t)

t in
10 3

s x in m

ŵ
i(
t)

in
K

1.0
0.5

0
0 0.1 0.2 0.3

30

20

10

0
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Cooperativity-Preserving Feedback Control (1)

Worst-case lower and upper
bounds x(t) and x(t) of the
true states

Worst-case, component-wise
non-negative deviation
µi(t) = v̂i(t)− x(t)

Component-wise defined
non-negative interval diameters
εi(t) = ŵi(t)− v̂i(t) for the
i-th observer

Component-wise non-negative
deviation ηi(t) = x(t)− ŵi(t),
i ∈ {1, . . . , L}

time t

st
at
e
x
(t
)

x(t)
v̂(t)

x(t)

ŵ(t)

µ(t)

ε(t)

η(t)
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Cooperativity-Preserving Feedback Control (2)

Definition of the control law

Generalization of the classical state feedback control approach

u(t) = uff(t)−
L∑
ς=1

(
Kς v̂ς(t) + Kςŵς(t)

)

Stability and optimality requirements

ζ̇(t) =

[
A 0

0 A

]
· ζ(t) + L ·

[
B

B

]
·w(t) +

[
B

B

]
· ν(t)

with
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Cooperativity-Preserving Feedback Control (2)

Definition of the control law

Generalization of the classical state feedback control approach

u(t) = uff(t)−
L∑
ς=1

(
Kς v̂ς(t) + Kςŵς(t)

)
Stability and optimality requirements

ζ̇(t) =

[
A 0

0 A

]
· ζ(t) + L ·

[
B

B

]
·w(t) +

[
B

B

]
· ν(t)

with
ν(t) = −

[
L∑
ς=1

Kς

L∑
ς=1

Kς

]
· ζ(t)
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Cooperativity-Preserving Feedback Control (2)

Definition of the control law

Generalization of the classical state feedback control approach

u(t) = uff(t)−
L∑
ς=1

(
Kς v̂ς(t) + Kςŵς(t)

)
Stability and optimality requirements

ζ̇(t) =

[
A 0

0 A

]
· ζ(t) + L ·

[
B

B

]
·w(t) +

[
B

B

]
· ν(t)

with

A =

[
A 0

0 A

]
, B1 = L ·

[
B

B

]
, B2 =

[
B

B

]
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Cooperativity-Preserving Feedback Control (3)

H∞ performance specification

Augmented output equations

y∞(t) =

−ΞInx×nx ΞInx×nx

0 0
0 0

 · ζ(t) +

 0
LInν

0

 ·w(t) +

 0
0

ΓInν

 · ν(t)

with Ξ = diag {ξj}, ξj > 0 and Γ = diag {γj}, γj > 0

Abbreviations

C∞ =

−ΞInx×nx ΞInx×nx

0 0
0 0

 , D∞1 =

 0
LInν×nν

0

 , D∞2 =

 0
0

ΓInν×nν
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Cooperativity-Preserving Feedback Control (4)

Design LMI: Stability and optimality

S1,1 B1 S1,3

BT
1 −γ∞I DT

∞1

S3,1 D∞1 −γ∞I

 ≺ 0

with

S1,1 = (I2×2 ⊗Q)AT −
[
L∑
ς=1

Yς

L∑
ς=1

Yς

]T
·BT

2

+ A (I2×2 ⊗Q)−B2 ·
[
L∑
ς=1

Yς

L∑
ς=1

Yς

]
︸ ︷︷ ︸

AQ
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Cooperativity-Preserving Feedback Control (4)

Design LMI: Stability and optimality

S1,1 B1 S1,3

BT
1 −γ∞I DT

∞1

S3,1 D∞1 −γ∞I

 ≺ 0

with

S1,3 = ST
3,1 = (I2×2 ⊗Q)CT∞ −

[
L∑
ς=1

Yς

L∑
ς=1

Yς

]T
·DT
∞2
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Cooperativity-Preserving Feedback Control (5)

Summarized in an augmented set of state equations

d

dt



x(t)
µ1(t)

...
µL(t)
ε1(t)

...
εL(t)
x(t)


=

([
A1,1 0
0 A2,2

]
−
[
B1,1 0
0 B2,2

]
·
[
K1,1 0
0 K2,2

])
︸ ︷︷ ︸

=AK(Kς ,Kς)

·



x(t)
µ1(t)

...
µL(t)
ε1(t)

...
εL(t)
x(t)


+ S̃ ·

[
yd(t)
ym(t)

]
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Cooperativity-Preserving Feedback Control (6)

Generalization for preservation of cooperativity

Use of
AQ = AK

(
Kς ,Kς

)
·
(
I(2L+2)×(2L+2) ⊗Q

)
instead of AQ

Subsequent iterative computation of the controller gains to ensure
cooperativity of the augmented system model as well as stability with
a parameter-independent Lyapunov function approach
=⇒ Generalization of the iteration described in detail for the observer
parameterization

Simultaneous minimization of γ∞ > 0
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Conclusions and Outlook on Future Work

Cooperative system models (typical for thermal and fluidic systems,
compartment models in biology and medicine, probabilities in Markov
chain models)

Design of interval observers for computation of guaranteed state
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observer-based state feedback control

Experimental validation for further application scenarios, e.g.,
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State feedback vs. output feedback control
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