



#### On Mode Discernibility and Bounded-Error State Estimation with Hybrid Systems

#### Nacim Ramdani, Louise Travé-Massuyès, Carine Jauberthie PRISME U. Orléans & LAAS CNRS U. Toulouse

11th SWIM, 25-27 July 2018, Rostock.









Interaction discrete + continuous dynamics

#### Safety-critical embedded systems

Networked autonomous systems





**Operation in challenging environment, requires** ...

#### Verification

- Numerical proof, or
- Falsification via counter-example

#### Synthesis

- Correct by construction » …
- Monitoring, FDI
  - Complete state reconstruction
  - Worst-case scenario



 $e:g(x) \ge 0$ 

 $x \in \operatorname{Inv}(l)$ 

 $\dot{x} \in \operatorname{Flow}(l, x)$ 

x' = r(e, x)

 $x' \in \operatorname{Inv}(l')$ 

 $\dot{x}' \in \operatorname{Flow}(l', x')$ 

#### ■ Modelling → hybrid automaton (Alur, et al. 1995)

 $x \in \operatorname{Init}(l)$ 

- Non-linear continuous dynamics
- Nonlinear guards sets
- Nonlinear reset functions
- Bounded uncertainty

$$H = (\mathcal{Q}, \mathcal{D}, \mathcal{P}, \Sigma, \mathcal{A}, \mathsf{Inv}, \mathcal{F}),$$

Continuous dynamics

$$\begin{array}{rl} \mathsf{flow}(q): & \dot{\mathbf{x}}(t) = f_q(\mathbf{x}, \mathbf{p}, t), \\ \mathsf{Inv}(q): & \nu_q(\mathbf{x}(t), \mathbf{p}, t) < 0, \end{array}$$

Discrete dynamics

$$\mathcal{A} \ni e: (q \rightarrow q') = (q, \text{guard}, \sigma, \rho, q'),$$
  
guard(e):  $\gamma_e(\mathbf{x}(t), \mathbf{p}, t) = 0,$ 

 $t_0 \leq t \leq t_N, \quad \mathbf{x}(t_0) \in \mathbb{X}_0 \subseteq \mathbb{R}^n, \quad \mathbf{p} \in \mathbb{P}$ 



#### **Example :** the bouncing ball





#### **Monitoring, Estimation**



## Monitoring of Hybrid Systems

#### ■ Modelling → hybrid automaton

- Non-linear continuous dynamics
- Bounded uncertainty

#### State Estimation

reconstruct system state variables

8

- switching sequence
- •continuous variables

#### Important issue

• Control & Diagnosis ...







#### **Complete Hybrid State Estimation**



















































































## **Hybrid State Estimation**



génierie des Systèmes, Mécanique, Energétique

M. Maïga, N. Ramdani, L. Travé-Massuyès, C. Combastel, **A comprehensive method for reachability analysis of uncertain nonlinear hybrid systems**, IEEE Transactions on Automatic Control, vol. 61, n.9, 2016. Pages 2341-2356

N. Ramdani, L. Travé-Massuyès, C. Jauberthie. **Mode discernibility and bounded-error state estimation for nonlinear hybrid systems** Automatica, vol. 91, 2018. Pages 118–125





#### Definition (Mode discernibility (Babaali & Pappas (2005))

Two different modes  $q_1$  and  $q_2$  are discernible over T > 0 if whenever  $q([0, T]) \equiv q_1$  and  $q'([0, T]) \equiv q_2$ ,

## $\begin{array}{l} q_{1} \neq q_{2} \Rightarrow \\ \exists u, \forall \chi_{0}, \forall \chi_{0}', y_{q}([0, T]; 0, \chi_{0}, u) \neq y_{q'}([0, T]; 0, \chi_{0}', u). \end{array}$

13





#### **Collection of continuous models**

mode  $q \in \mathbb{Q}$ 

# $\begin{cases} flow(q) : \dot{z}(t) = f_q(z(t), u(t)), \\ output(q) : y(t) = \mu_q^\top z(t), \end{cases}$

14

where  $\mu_q \in \mathbb{R}^{n \times n_y}$ .





The composite continuous model,  $s \in \mathbb{Q}$ :  $(n_q = |\mathbb{Q}|)$ 

$$\dot{z}(t) = \mathcal{F}(z(t), \mathbf{s}, u(t)) = \sum_{i=1}^{n_q} \frac{\prod_{j=1, j \neq i}^{n_q} (\mathbf{s} - q_j)}{\prod_{j=1, j \neq i}^{n_q} (q_i - q_j)} f_{q_i}(z, u), \quad (1)$$

 $z_{s}(t, t_{0}, z_{0}, u) =$ solution of IVP ODE (1)...

The composite output model :

$$y(t) = \mathcal{Y}_{s}(t, t_{0}, z_{0}, u) = \sum_{i=1}^{n_{q}} \frac{\prod_{j=1, j\neq i}^{n_{q}} (s - q_{j})}{\prod_{j=1, j\neq i}^{n_{q}} (q_{i} - q_{j})} \eta_{q_{i}}^{\top} z_{s}(t, t_{0}, z_{0}, u).$$



Theorem (Mode discernibility (Ramdani, Travé-Massuyès, Jauberthie, 2018))

If the scalar parameter s in system (1)-(2) is identifiable, then the hybrid modes  $q_i$   $i \in \mathbb{Q}$  are discernible.



Let us consider a controlled dynamical system described by:

$$\dot{z} = \mathfrak{f}(z, p, u),$$
 (3)  
 $y = \mathfrak{g}(z, p),$  (4)

where :

• 
$$z(t) \in \mathbb{R}^n$$
,  $u(t) \in \mathbb{R}^{n_u}$ ,  $y(t) \in \mathbb{R}^{n_y}$ ,  $p \in \mathbb{P} \subseteq \mathbb{R}^{n_p}$ ,

The mappings f and g are real, analytic and infinitely differentiable on  $\mathbb{M}$ , where  $\mathbb{M}$  is an open set of  $\mathbb{R}^n$ .



#### Definition (Ljung and Glad 1994)

The parameter  $p_i$  of model (3)-(4) is globally identifiable if there exists  $u(t) \in \mathbb{R}^{n_u}$  such that for all  $(\hat{p}_i, p_i^*) \in \mathbb{P}^2$ ,  $\hat{p}_i \neq p_i^*$ :

$$(\forall t \in [0, T], y(t, \hat{p}_i, u) = y(t, p_i^*, u)) \Rightarrow (\hat{p}_i = p_i^*),$$

and the parameter vector p is globally identifiable in  $\mathbb{P}$  if all its components  $p_i$  are globally identifiable in  $\mathbb{P}^{n_p}$ .



Method based on differential algebra (Kolchin and al., 1973)

• elimination order  $\{p\} < \{y, u\} < \{x\}$ 

 $(\Rightarrow$  eliminate unmeasured state variables),

 Rosenfeld-Groebner algorithm = elimination algorithm (Boulier et al., 1997),



Method based on differential algebra (Kolchin and al., 1973)

• elimination order  $\{p\} < \{y, u\} < \{x\}$ 

 $(\Rightarrow$  eliminate unmeasured state variables),

 Rosenfeld-Groebner algorithm = elimination algorithm (Boulier et al., 1997),

#### **Regular differential chain**

 $\Rightarrow$  relations between inputs, outputs and parameters:

 $\mathscr{R}_i(y, u, p) = m_0^i(y, u) + \sum_{k=1}^{n_i} \frac{\theta_k^i(p)}{k} m_k^i(y, u), \quad i = 1, \dots, n_y$ 

- $\rightarrow$  Exhaustive summary of  $\mathscr{R}_i$ :
  - $(\theta_{k}^{i})_{1 \leq k \leq n_{i}}$  are rational in  $p, \theta_{\alpha}^{i} \neq \theta_{\beta}^{i}$  ( $\alpha \neq \beta$ ),
- $\rightarrow (m_k^i)_{1 \le k \le n_i}$  are differential polynomials with respect to y and u and  $m_0^i \ne 0$ .



Wronskian

Consider  $\Delta R(y, u)$  that denotes the functional determinant formed from the  $\{m_k(y, u)\}_{1 \le k \le \overline{n}}$  and given by the the Wronskian

$$\Delta R(y, u) = \begin{pmatrix} m_1(y, u) & \dots & m_n(y, u) \\ m_1(y, u)^{(1)} & \dots & m_n(y, u)^{(1)} \\ & \ddots & \\ m_1(y, u)^{(\bar{n}-1)} & \dots & m_n(y, u)^{(\bar{n}-1)} \end{pmatrix}$$

Proposition :

If  $\Delta R(y, u) \neq 0$  then  $\{m_k(y, u)\}_k$  are linearly independent.



#### Theorem (Denis-Vidal et al. 2001)

Assume that the functional determinant  $\Delta R(y, u)$  is not identically equal to zero. If the mapping

$$\phi: p \mapsto (\theta_1(p), \ldots, \theta_n(p))$$

is injective then the parameter p is globally identifiable.

Note: If  $n_{\gamma} \ge 1$ , the corresponding  $(\theta_k^i)_{1 \le k \le n_i}$  must be added to the image of the function  $\phi$ .



Theorem (Mode discernibility (Ramdani, Travé-Massuyès, Jauberthie, 2018))

If the scalar parameter s in system (1)-(2) is identifiable, then the hybrid modes  $q_i$   $i \in \mathbb{Q}$  are discernible.

Note:

- The identifiability condition of this theorem applies to the parameter s, which is scalar.
- This theorem does not consider mode invariants that may be used to discriminate two different modes. It is thus not a necessary condition for mode discernibility.









# Hybrid Mass-SpringUnknown initial mode.

Composite model :

$$\begin{cases} \dot{x}_{1}(t) = x_{2}(t) - x_{4}(t), \\ \dot{x}_{2}(t) = \frac{s - q_{1}}{q_{0} - q_{1}}(-\kappa_{1}x_{1}(t)) \\ + \frac{s - q_{0}}{q_{1} - q_{0}}(-\kappa_{1}x_{1}(t) - \kappa_{2}x_{2}(t) + \kappa_{2}x_{4}(t)), \\ \dot{x}_{3}(t) = x_{4}(t), \\ \dot{x}_{4}(t) = \frac{s - q_{1}}{q_{0} - q_{1}}(\kappa_{3}x_{1}(t) - \kappa_{5}x_{3}(t) - \kappa_{6}x_{4}(t)) \\ + \frac{s - q_{0}}{q_{1} - q_{0}}(\kappa_{3}x_{1}(t) + \kappa_{4}x_{2}(t) - \kappa_{5}x_{3}(t) \\ - (\kappa_{4} + \kappa_{6})x_{4}(t)). \end{cases}$$

$$\begin{cases} y_{1}(t) = x_{1}(t), \\ y_{2}(t) = x_{3}(t). \end{cases}$$



#### Hybrid Mass-Spring

Regular Differential Chain





#### Hybrid Mass-Spring

Regular Differential Chain

$$\mathscr{R}_i(y, u, p) = m_0^i(y, u) + \sum_{k=1}^{n_i} \theta_k^i(p) m_k^i(y, u), \quad i = 1, \dots, n_y$$

$$+(q_0-q_1)\kappa_5y_2(t)+(q_1-q_0)\kappa_3y_1(t)\\-\kappa_4q_0\dot{y}_1(t)\kappa_6+\mathbf{S}\,\kappa_4\dot{y}_1(t)\kappa_6.$$



# Hybrid Mass-Spring Wronskien non-vanishing if y <sub>1</sub>(t) ≠ 0 Exhaustive summary

$$heta_1^1(s) = s$$
  
 $heta_1^2(s) = s$ 

 $\phi: p \mapsto (\theta_1(p), \ldots, \theta_n(p))$  is bijective.

#### then the modes are discernible.

26



#### Hybrid Mass-Spring

#### Unknown initial mode. CPU time 242s





#### **Hybrid Mass-Spring**

#### Unknown initial mode. CPU time 242s





#### Hybrid Mass-Spring

#### Unknown initial mode. CPU time 242s





#### Future work

28



**Research directions** 

# Explore extension to robust estimation with sporadic or self-triggered sampling.

**Further the methods for embedded FDI.** 



## **Selected References**



- N. Ramdani, L. Travé-Massuyès, & C. Jauberthie. Mode discernibility and boundederror state estimation for nonlinear hybrid systems, Automatica 91, 2018. 118-125
- M. Maïga, N. Ramdani, L. Travé-Massuyès, & C. Combastel, A comprehensive method for reachability analysis of uncertain nonlinear hybrid systems, IEEE Transactions on Automatic Control, vol. 61, n.9, 2016. pp. 2341-2356
- L. Denis-Vidal, G. Joly-Blanchard, G., & C. Noiret, C. Some effective approaches to check identifiability of uncontrolled nonlinear systems, Mathematics and Computers in Simulation, 57, 2001, pp. 35–44.



#### Thank you !