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n Hybrid and Cyber-Physical Systems
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Hybrid Cyber-Physical Systems

n Interaction discrete  
     + continuous dynamics 

n Safety-critical  
     embedded systems 

n Networked  
     autonomous systems
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Hybrid Cyber-Physical Systems

Operation in challenging  
environment, requires … 

nVerification 
n Numerical proof, or 
n Falsification via counter-example 

nSynthesis 
n « Correct by construction » …  

nMonitoring, FDI 
n Complete state reconstruction  
n Worst-case scenario
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Hybrid Cyber-Physical Systems

nModelling → hybrid automaton (Alur, et al. 1995) 

l Non-linear continuous dynamics  
l Nonlinear guards sets 
l Nonlinear reset functions  
l Bounded uncertainty

Continuous dynamics

Discrete dynamics

l

x ∈ Inv(l)

l′

x′ ∈ Inv(l′)

e : g(x) ≥ 0

ẋ′ ∈ Flow(l′, x′)

x′ = r(e, x)

ẋ ∈ Flow(l, x)

x ∈ Init(l)
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nExample : the bouncing ball

Hybrid Cyber-Physical Systems

initial conditions

discrete transition 
jump 



nMonitoring, Estimation
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Monitoring of Hybrid Systems

nModelling → hybrid automaton 
l Non-linear continuous dynamics  
l Bounded uncertainty 

nState Estimation  
→ reconstruct system state variables 
lswitching sequence 
lcontinuous variables 

nImportant issue 
l Control & Diagnosis ...
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Fig. 3. Time history of the x2 component of the reachable set of (52) as obtained with Theorem 2, with an initial domain for state vector of size 100%. The
curve labelled ‘no uncertainty’ corresponds to no uncertainty in the parameter vector (CPU time= 38.26 s PIV 2GHz) and the one labelled ‘with uncertainty’
corresponds to the presence of uncertainty in the parameter vector (CPU time = 38.58 s PIV 2 GHz).
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Fig. 4. Switching sequence for the hybrid automaton which drives the upper bounding system for (53).

the latter, i.e. using functions �i⇧(.) defined in Rule 2, the upper bounding systems are obtained by replacing parameter
components in each algebraic expression of fi� either by their upper or by lower bound, form-typemodes, or by using whole
parameter uncertainty domain, for s-type modes. Since there are 10 partial derivatives to monitor and 3 possible values for
the parameter components (lower bound / upper bound / whole uncertainty interval), the set Q of discrete modes contains
310 elements, and we merely use a word of ternary digits of length 10, to number the modes. Note however, that not all of
them may be activated.

Fig. 4 shows the switching sequence for the hybrid automaton which derives the upper component-wise bounds of the
reachable set of (53), as generated by algorithm Hybrid-Upper-Bounding. Some modes are active on very short time
intervals. Fig. 5 magnifies the switching sequence around t = 60 s. In fact, such modes are s-type modes which are usually
active only over one or two integration time intervals.

The automatonwhich derives the lower component-wise bounds is obtained in a similarmanner. The switching sequence
for this automaton is shown in Fig. 6.

Note that both initial state vector and parameter vector are taken uncertain with large uncertainties. Fig. 7 shows the
time history of the x12 component of the reachable set. Obviously, even for very large parameter boxes the hybrid bracketing
method successfully computes the reachable set.
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n Complete Hybrid State Estimation
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Reachability-based approach
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Hybrid State Estimation

M. Maïga, N. Ramdani, L. Travé-Massuyès, C. Combastel,  
A comprehensive method for reachability analysis of uncertain nonlinear hybrid 
systems, IEEE Transactions on Automatic Control, vol. 61, n.9, 2016. Pages 2341-2356

N. Ramdani, L. Travé-Massuyès, C. Jauberthie. 
Mode discernibility and bounded-error state estimation for nonlinear hybrid systems  
Automatica, vol. 91, 2018. Pages 118–125 
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Mode discernibility
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Mode discernibility

nCollection of continuous models 
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Parameter identifiability
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Checking identifiability
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Checking identifiability
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Wronskian
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Parameter identifiability
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Mode discernibility



n Example
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nHybrid Mass-Spring 
l Unknown initial mode. 

l Composite model :  

State Estimation
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Mode discernibility

n Hybrid Mass-Spring 
lRegular Differential Chain 
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Mode discernibility

n Hybrid Mass-Spring 
lRegular Differential Chain 
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Mode discernibility

n Hybrid Mass-Spring 
lWronskien non-vanishing if  
lExhaustive summary 

is bijective.  

then the modes are discernible.
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nHybrid Mass-Spring 
l Unknown initial mode. CPU time 242s

State Estimation

Position 1

-0.5

 0

 0.5

 1

 1.5

 0  2  4  6  8  10  12

x
1

t

Reconstructed 
Actual

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0  2  4  6  8  10  12

x
3

t

Reconstructed 
Actual

Position 2



!27
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nHybrid Mass-Spring 
l Unknown initial mode. CPU time 242s
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n Future work
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Research directions

  
nExplore extension to robust estimation with  

sporadic or self-triggered sampling. 
nFurther the methods for embedded FDI.
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