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Summary

I We solve a mechanism directly from a Lagrangian form

I We don’t(((((((explicitly derive equations of motion

I No((((((((
symbolic algebra to manipulate equations

I We work in cartesian coordinates

I Lagrangian derived from a text file description—the Data

I Action means the resulting animation

I Our technology is based on
I Automatic di↵erentiation (AD, aka algorithmic di↵erentiation)

I Daets (NN, JP, 2009–), a C++ solver for high-index
di↵erential-algebraic equations (DAEs)
Based on Pryce’s structural analysis, and Taylor series
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System

I We have built a system that

I Data: reads a text-file
specification of a
mechanism, initial
conditions etc.

I Creates Lagrangian; calls
Daets to solve and write
output file

I Action: visualizes by our
Matlab code
animate3Dmech.m

mechanism specification
YAML file

output data file

animation

solve numerically  by 
DAETS

animate by 
animate3Dmech.m

I Text-file is in YAML, a human-readable data serialization
language
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Example: Mechanism1

I 3 uniform thin rods AC,BD,EF of
mass m and length `

I A uniform triangular (45�45�90�)
plate CDE of mass M and short side
`

I Pin-jointed at C,D,E and at fixed
points A,B on same horizontal level,
distance L apart, from which system
hangs

I Moves under gravity

I Animation
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Dramatis Personae (Mechanism 1 specification in YAML)

Title: Mechanism1
Dimension: 2
PhysicalParams:
l: 1 # length ` of rods

L: 0.58 # distance of top pivots A,B

m: 2 # mass of rods

M: 5 # mass of plate

PartData:
# coordinates of fixed points.

Fixed: {A: [-L/2], B: [L/2]}
Rigids:
# Geom: local frame geometry

#Dyna: centroid, mass, moment of inertia

AC,BD,EF: {Geom: [ [l] ], Dyna: [ [l/2], m, m*l**2/12 ]}
CDE:
Geom: [ [l*sqrt(2)], [l/sqrt(2), -l/sqrt(2)] ]
Dyna: [ [l/sqrt(2), -l/(3*sqrt(2))], M, M*l**2/9 ]

AppliedForces:
Gravity: #turns it on with default value in SI units
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Act 1 Scene 1 + Stage Directions (IVs; solver & animation settings)

ProblemData: # integration interval, etc.

t0: 0
tend: 60

# Guesses for C, Ċ etc. where ”fixed” means IV not guess - don’t change it

positions: {C: [[-l/sqrt(2),fixed],-l], D: [l/sqrt(2),-l],
F: [[0,fixed], -l*(1+1/sqrt(2))]}

velocities: {C: [[-6,fixed],0], D: [2,0], F: [[3,fixed],0]}
#That starts it in equilibrium position & gives a sideways ”kick”

SolverParams : # to guide DAETS

Integration:
tol: 1e-12
order: 20

OutFile: #says output 0th and & 1st derivative of each moving point

points: [C: 2, D: 2, E: 2, F: 2]
tformat: ’% .17e’ #to 17 sig figs

qformat: ’% .17e’
Animation: #this guides animate3Dmech.m

view: [0, 90] # camera azimuth, elevation

Skeleton:
zscale: 0.02 #vertical scale, e.g. of fixed pivots

fleshoutwid: 0.05 #says how wide ”thin” things are drawn
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Lagrangian mechanics theory

The Lagrangian function

L = T � V

is a powerful way to describe a mechanical system

I T = total kinetic energy, in terms of velocities and possibly
positions

I V = total potential energy, caused by conservative (energy
preserving) forces depending only on system position

I May also have holonomic (not velocity-dependent) constraints
on motion, and/or external applied forces

I Simplifies modelling!
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Lagrangian cont.

I Describe configuration at time t by vector q = (q1, . . . , qnq) of
generalised position coordinates

I Vector ˙

q is generalised velocities

I Assumptions from previous slide imply

L = T � V , with T = T (q, ˙q), V = V (q)

plus any constraints on motion:

0 = C
j

(t,q), j = 1 :n
c
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Lagrangian cont.

I Whatever coordinates chosen, variational “stationary action”
principle gives (n

q

+n
c

) Euler–Lagrange equations of motion:

d

dt

@L

@q̇
i

� @L

@q
i

+

ncX

j=1

�
j

@C
j

@q
i

= Q
i

(t), i = 1 :n
q

(1)

C
j

(t,q) = 0, j = 1 :n
c

(2)

I �
j

are Lagrange multipliers for the constraints
Q

i

(t) are generalised external force components, if any (whose
definition also involves @/@q

i

)

I If n
c

> 0 the system is of first kind and is an index 3 DAE

I If n
c

= 0 the system is of second kind, reducible to an ODE
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Example: free motion of simple pendulum

Taking q = (x, y) = cartesian coordi-
nates of pendulum bob (of mass m) with
y downward, gives

T =

1
2m(ẋ2 + ẏ2), V = �mgy

L= 1
2m(ẋ2 + ẏ2) +mgy

with one constraint that we write

0 = C=

1
2(x

2
+ y2 � `2)

l

(x,y)

(x',y')

Euler–Lagrange, on dividing through by m, give pendulum DAE

0 = A = ẍ+ x� from 0 =

d
dt

@L

@ẋ

� @L

@x

+ �@C

@x

0 = B = ÿ + y�� g from 0 =

d
dt

@L

@ẏ

� @L

@y

+ �@C

@y

0 = 2C = x2 + y2 � `2

9
>=

>;

(3)
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Pendulum cont.

Alternatively, taking q = (✓) = angle of pendulum from downward
vertical, gives

T =

1
2m(` ˙✓)2, V = �mg` cos ✓

L= 1
2m(` ˙✓)2 +mg` cos ✓

with no constraints. Then Euler–Lagrange lead to an ODE form

¨✓ = �g

`
sin ✓ from 0 =

d

dt

@L

@ ˙✓
� @L

@✓

which is equivalent to the DAE

For one pendulum the angle model wins, but for n > 1 pendula (in
a chain) the cartesian model is much simpler . . .
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Example: n > 1 pendula, in 3D cartesians

I
r

i

= (x
i

, y
i

, z
i

) position of ith bob (with z downward)

I Generalized coordinates
q = (r1, . . . , rn) = (x1, y1, z1, . . . , xn, yn, zn)

I 1st kind formulation is

L =

1
2m

nX

i=1

| ˙r
i

|2 +mg

nX

i=1

z
i

0 = C
j

= |r
j

� r

j�1|2 � `2, j = 1 :n

9
>=

>;
(4)

where r0 = 0, and | · |2 is the squared length of a 3-vector
I Constraints say the rods have length `

I
3n coordinate variables, n Lagrange multipliers
Hence second-order DAE of size 4n and index 3

I Daets with our “Lagrangian facility” solves (4) as written
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Example: The same, in ODE form

I Use spherical polar coordinates (✓
i

,�
i

) for rod i
I ✓i is rod’s angle with downward vertical
I �i is angle of rotation from the xz plane

I With q = (✓1,�1, . . . , ✓n,�n

) we can get rid of the constraints

I
2n coordinates, so 4n ODEs when reduced to first-order

I Formulation is way more complex. E.g. KE is

T =

1

2

m`2
nX

k=1

������

kX

i=1

0

@
cos ✓i ˙✓i cos�i � sin ✓i sin�i

˙�i

cos ✓i ˙✓i sin�i + sin ✓i cos�i
˙�i

� sin�i
˙�i

1

A

������

2

and you still have the @/@q
i

, @/@q̇
i

stu↵ to do

I It seems any other way to remove the constraints will use
angles in some form

14/28



Example Lagrangians Lagrangian facility Mechanism facility More examples Conclusion

Summary advantages of a high-index DAE code

I Index measures how di�cult is to solve a DAE compared to
an ODE (index 0)

I ODEs and index-1 DAEs seen as “easy” to solve and high-
index DAEs as “hard”

I So considerable e↵ort is spent to find coordinates giving a
2nd-kind Lagrangian and deriving equations of motion

I But mathematical model often simpler in cartesian coordinates

I Daets handles resulting 1st kind Lagrangian systems easily

I We streamline this by Daets’s Lagrangian facility and
mechanism facility . . .
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First. . . Lagrangian facility

I On top of Daets, this solves directly from L and the
constraints

I Builds on AD package FADBAD++ which is integral to Daets
I Computes derivatives “on the fly” behind the scenes
I No symbolic algebra

I Very e�cient (thanks to Xiao Li, M.Sc. McMaster U)
I common subexpression elimination through operator

overloading in AD
I sparse algorithms in AD
I sparse linear algebra
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Next. . . mechanism facility

Building on the previous, our goal is to

1. Theory: Express Lagrangian of mechanism (robot arm etc.) by
x, y, z coordinates of chosen reference points (RPs) on its parts

I In 2D, a rigid body’s position is fixed by 2 points on it in
“general position”; in 3D, by 3 points; etc

I Express its PE (if relevant) and KE in terms of world-positions
and velocities of such RPs

I Hence multi-body L = L(q, ˙q) with q = (suitable RPs)

I . . . entirely in cartesian coordinates

2. Practice: Create
I text file syntax/semantics for describing a class of mechanisms
I C++ API to convert this to a Lagrangian that Daets then

handles by the Lagrangian facility
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What mechanism facility currently provides
We are tidying up 2D before moving to 3D

I Named Points; same point on two parts means joined there
I One declares some points fixed in world frame
I All others are assumed moving

I Parts (a part’s name is the list of points on it)
I Rigid body (dynamics = mass, centroid, moment of inertia)
I Particle (dynamics = mass only)
I Spring (dynamics = sti↵ness, rest-length)

Optionally mass, then dynamics of a stretchable uniform rod
I Forces

I Constant (in world frame or in local frame) force
Applied at a named point of body, fixed in local frame

I Constant torque on a rigid part
I Time-varying forces still to come—need compile/link stage

I Collinears
I Constrains 3 or more points to lie on a straight line

Useful for specifying various kinds of joint
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Mechanism2

I Rigid rods CK, KM ,
DL, LM , EF , FP
and triangle plate
CDE

I Springs AC, BD

I Point masses at
M , N , P

I Collinear G,H, P

I Animation
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Andrews squeezing mechanism
 The MBS diagram

 

The original diagram.

K3 is star-shaped and 
K5, K7 are not straight!

I Part of MBS Multi-Body Systems Benchmark in OpenSim

I Also in the Test Set for IVP Solvers, where . . .
I It is formulated as an index 3 DAE in angle coordinates
I Equations are not pretty at all

I We modeled and solved in cartesian coordinates

I Confirmed very close agreement between the two solutions

I Animation
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http://rehabenggroup.github.io/MBSbenchmarksInOpenSim/benchmarks/A03_AndrewsMechanism.html
https://archimede.dm.uniba.it/~testset/report/andrews.pdf
https://youtu.be/RtmqUnv1tak
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Further examples

I These are in 3D so don’t use the mechanism facility, but do
use the Lagrangian facility

I John P extended the basic rigid body reference point theory
to 3D and we are working out the implications

I Indeed we can do rigid body dynamics in any dimension

I QR factorization is key to the algorithm
No quaternions

I Example: multi-pendulum made of genuinely 3D rods joined
by Universal Joints (Hooke–Cardan joints)
UJs transmit torque round a bend—permit 2 DOF of relative
angular position but forbid relative rotation about rod-axes

I Animation
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Larger example: Particle-spring system

I Rectangular grid of
m⇥ n particles
connected by damped
springs

I A test for cloth
simulation in movies

0

1

2

3

4

0

2

4

6

-1

-0.5

0

0.5

1

I Particle (i, j) is attached to

(i± 1, j) and (i, j ± 1) for i = 1 :m, j = 1 :n

I Index i = 0 or m+ 1, resp. j = 0 or n+ 1, means a fixed
position
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Particle-spring cont.

I Each particle (i, j)
I coordinates rij =

�
xij , yij , zij

�
full 3D motion

I mass M

I Each spring
I sti↵ness k
I length at rest l
I damping kd⇥ stretch-rate (except the boundary ones)

I Spacing �x and �y between particles in x and y directions

I Initially all particles at rest in xy plane, we push the middle
particle upwards

I
90⇥ 90 particles, 24 300 second-order ODEs

I Animation
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Particle-spring cont
I Lagrangian is

L =

1
2M

mX

i=1

nX

j=1

| ˙rij |2 �Mg
mX

i=1

nX

j=1

zij

� 1
2k

2

4
mX

i=1

nX

j=0

(|ri,j+1 � rij |� l)2 +

nX

j=1

mX

i=0

(|ri+1,j � rij |� l)2

3

5

I We use Rayleigh’s dissipative function

R =

1
2kd

mX

i=1

n�1X

j=1

| ˙ri,j+1 � ˙rij |2 + 1
2kd

nX

j=1

mX

i=1

| ˙ri+1,j � ˙rij |2

I We encode L and R—that’s all

I Daets solves a sparse, second-order ODE of size 3 ·m · n
d

dt

@L

@ ˙r
ij

� @L

@r
ij

+

@R

@ ˙r
ij

= 0, i = 1 : m, j = 1 : n
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Conclusions and further work

I “Data, Lagrangian, Action” works as a practical tool.
We aim now to develop 3D, and improve user interface

I An implication for teaching the subject:
I Since high-index DAEs are now as easy to solve as ODEs, a

Lagrangian formulation needn’t avoid constraints
I So rigid-body mechanical systems can be modeled in cartesian

coordinates, which is simpler
I This makes the concept so easy that Lagrangian stu↵ can be

taught at undergraduate level
After doing some simple cases from first principles, students
can experiment with a tool like the mechanism facility

I But there’s a big new thing for Ned & me to learn . . .
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The natural coordinates community

Ned & I have only recently learnt of work going on for ⇠ 30 years,
on multi-body modelling by “natural coordinates”

I Their basic object is the rigid-body shift+rotate map
R 7! p(t) +Q(t)R stored as 3 + 3⇥ 3 = 12 scalars per body

I Our basic object is point x(t). In 3D, three points define body
position, making 3⇥ 3 = 9 scalars per body (less, as points
are shared)

I They mostly have Finite Elements background so very
di↵erent mind-set from ours.
Tasks considered serious but Daets probably handles well:

I Finding e.g. equilibrium configuration
I Analysis of kinematic chains
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Appendix: YAML text for Andrews squeezing mechanism

Complete description except for PhysicalParams values and Title .
The boxed text specifies the topology, geometry and dynamics.

Dimension: 2

PartData:
Fixed: { O: [], A: [xa, ya ], B: [xb, yb], C: [ xc, yc] }
Rigids:
OF: { Geom: [ [rr] ], Dyna: [ [ ra ], m1, i1 ] }
FE: { Geom: [ [d ] ], Dyna: [ [ da ], m2, i2 ] }
BED: { Geom: [ [ss], [sc, sd] ], Dyna: [ [sa, sb], m3, i3 ]}
EG: { Geom: [ [e] ], Dyna: [ [ea ], m4, i4 ] }
AG: { Geom: [ [zt] ], Dyna: [ [ta, tb], m5, i5 ] }
HE: { Geom: [ [zf] ], Dyna: [ [zf-fa], m6, i6 ] }
AH: { Geom: [ [u] ], Dyna: [ [ua, -ub], m7, i7 ] }

Springs:
CD: [ c0, l0 ]

AppliedForces:
ConstTorques: { OF: mom }

ProblemData:
t0: 0.0
tend: 0.03
positions:
E: [-2e-02, 1e-03]
F: [rr*cos(beta0), [rr*sin(beta0),fixed]]
G: [-3e-02, 1e-02]
H: [-3e-02, -1e-02]

velocities: # all 0’s by default

SolverParams:
Mode: solve
Integration:
tol: 1e-14
order: 17

Display:
tableau: false
IVs: false
consIVs: false
solution: false
stats: false
progress: false

OutFile:
tformat: ’% .17e’
qformat: ’% .17e’
points: [ D: 2, E: 2, F: 2, G: 2, H: 2 ]
angles: [ OF: 1 ]

Animation:
view: [-5, 27]
physParamsToShow: [$beta0, $c0, $mom]
Skeleton:
zscale: 0.0005
fleshoutwid: 0.0015
Skels:
BED: {path: XBXEXDX, newpts: [ X , [sa, sb] ] }
AG: {path: YAYGY, newpts: [ Y , [ta, tb] ] }
AH: {path: ZHZAZ, newpts: [ Z , [ua, -ub] ] }
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