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Summary

» We solve a mechanism directly from a Lagrangian form

» We don't explicithyderive equations of motion
> Ntho manipulate equations

» We work in cartesian coordinates
» Lagrangian derived from a text file description—the Data

» Action means the resulting animation

» Our technology is based on
» Automatic differentiation (AD, aka algorithmic differentiation)

» DaAETS (NN, JP, 2009-), a C++ solver for high-index
differential-algebraic equations (DAEs)
Based on Pryce's structural analysis, and Taylor series
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System

» We have built a system that

» Data: reads a text-file mechanism specification
specification of a
mechanism, initial

conditions etc. solve numerically by
DAETS

YAML file

» Creates Lagrangian; calls

DAETS to solve and write —
. output data file — _ animate by
output file animate3Dmech.m

» Action: visualizes by our
MATLAB code animation
animate3Dmech.m

» Text-file is in YAML, a human-readable data serialization
language
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Example: Mechanism1l

» 3 uniform thin rods AC, BD, EF of
mass m and length ¢

» A uniform triangular (45°45°90°)
plate CDFE of mass M and short side
14

» Pin-jointed at C, D, F and at fixed
points A, B on same horizontal level,
distance L apart, from which system
hangs

» Moves under gravity

Q. vimtion
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https://youtu.be/DiAIxKHF8_E
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Dramatis Personae (Mechanism 1 specification in YAML)

Title: Mechanisml
Dimension: 2
PhysicalParams:
1:1 # length £ of rods
L: 0.58 # distance of top pivots A, B

m: 2 # mass of rods
M: 5 ## mass of plate
PartData:

# coordinates of fixed points.
Fixed: {A: [-L/2], B: [L/2]}
Rigids:

# Geom: local frame geometry

#Dyna: centroid, mass, moment of inertia

AC,BD,EF: {Geom: [ [1] ], Dyna: [ [1/2], m, mx1*xx2/12 ]}
CDE:

Geom: [ [lxsqgrt(2)], [1/sqrt(2), —-1/sqrt(2)] ]

Dyna: [ [1/sqrt(2), -1/(3#sqrt(2))], M, Mx1l%x2/9 ]

AppliedForces:

Gravity : #turns it on with default value in Sl units
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Act 1 Scene 1 + Stage Directions (IVs; solver & animation settings)

ProblemData: # integration interval, etc.
t0: 0
tend: 60

# Guesses for C,C etc. where "fixed” means IV not guess - don't change it
positions: {C: [[-1/sqrt (2),fixed],-1], D: [1l/sqrt(2),-11,
F: [[0,fixed], -1%(1+1/sqrt(2))1}
velocities: {C: [[-6,fixed],0], D: [2,0], F: [[3,fixed],0]}
#That starts it in equilibrium position & gives a sideways "kick”
SolverParams : # to guide DAETS
Integration :
tol : le-12
order: 20
OutFile: #says output Oth and & 1st derivative of each moving point
points: [C: 2, D: 2, E: 2, F: 2]
tformat: ’%_.17e’ #to 17 sig figs
gformat: % _.17e’
Animation: #this guides animate3Dmech.m
view: [0, 90] # camera azimuth, elevation
Skeleton:
zscale: 0.02 #vertical scale, e.g. of fixed pivots
fleshoutwid: 0.05 #says how wide "thin” things are drawn
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Lagrangian mechanics theory

The Lagrangian function
L=T-V

is a powerful way to describe a mechanical system

» T = total kinetic energy, in terms of velocities and possibly
positions

» V = total potential energy, caused by conservative (energy
preserving) forces depending only on system position

» May also have holonomic (not velocity-dependent) constraints
on motion, and/or external applied forces

» Simplifies modelling!
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Lagrangian cont.

» Describe configuration at time ¢ by vector q = (q1,. .., qyn,) of
generalised position coordinates

» Vector q is generalised velocities

» Assumptions from previous slide imply

L=T-V, with T =T(q,q), V =V(q)
plus any constraints on motion:
O:Cj(tvq)a J=1lin
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Lagrangian cont.

» Whatever coordinates chosen, variational “stationary action”
principle gives (n,+n.) Euler—Lagrange equations of motion:

&87(]2707% T%:Qz(t>, Z:].:nq (1)

J=1

Ci(t,q) =0 j=1lmn. (2

)

> \; are Lagrange multipliers for the constraints
Q;(t) are generalised external force components, if any (whose
definition also involves 0/0¢;)

> If n, > 0 the system is of first kind and is an index 3 DAE

» If n. = 0 the system is of second kind, reducible to an ODE
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Example: free motion of simple pendulum

Taking q = (z,y) = cartesian coordi-
nates of pendulum bob (of mass m) with

y downward, gives | \ }

T = Im(i® + 9, V = —mgy o
. . .9
L= %m(:}[:2 + yz) + mgy g

with one constraint that we write
1/..2 2 2

Euler—Lagrange, on dividing through by m, give pendulum DAE

0=A =Z+zxA fromOz%%—%Jr)\%
0=B =9y+yr—g fromOz%%—%Jr)\%i

0=2C =a+y>— 1
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Pendulum cont.

Alternatively, taking g = (6) = angle of pendulum from downward
vertical, gives

T= %m(ﬁé)Z, V = —mglcosf
L= %m((fﬁ')z + mgl cos 6
with no constraints. Then Euler—Lagrange lead to an ODE form

s g . ~doL 0L
0= Esm& from()fdtae. 50

which is equivalent to the DAE

For one pendulum the angle model wins, but for n > 1 pendula (in
a chain) the cartesian model is much simpler ...

12/28



Example Lagrangians Lagrangian facility Mechanism facility More examples

Example: n > 1 pendula, in 3D cartesians

> r; = (zy,Y;, 2;) position of ith bob (with z downward)
> Generalized coordinates
q=(r1,...,rn) = (T1,Y1, 21, - - s Tn; Yn, Zn)

» 1st kind formulation is

n n
.12
L=1im g 5|° + mg E 2
i=1 i=1

OZCJ‘:|I‘J‘—I‘]‘_1|2—£2, j:1:n
where rg = 0, and | - |2 is the squared length of a 3-vector
» Constraints say the rods have length /¢
» 3n coordinate variables, n Lagrange multipliers
Hence second-order DAE of size 4n and index 3

» DAETS with our “Lagrangian facility” solves (4) as written

Conclusion
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Example: The same, in ODE form

» Use spherical polar coordinates (6;, ¢;) for rod i
» 6; is rod’s angle with downward vertical
> ¢; is angle of rotation from the xz plane

v

With q = (61, ¢1, . - ., 0n, &n) we can get rid of the constraints

v

2n coordinates, so 4n ODEs when reduced to first-order

v

Formulation is way more complex. E.g. KE is

1 n | k& [cosb; 0 cos ¢; — sin @, sin ¢; oZ
T= iméz E E cos 0; 0; sin ¢; + smﬁ cos ¢ O;
k=1 |i=1 —sin ()7, QL

and yous still have the 9/9¢;, 9/94; stuff to do

> It seems any other way to remove the constraints will use
angles in some form
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Summary advantages of a high-index DAE code

» Index measures how difficult is to solve a DAE compared to
an ODE (index 0)

» ODEs and index-1 DAEs seen as “easy” to solve and high-
index DAEs as “hard”

» So considerable effort is spent to find coordinates giving a
2nd-kind Lagrangian and deriving equations of motion

» But mathematical model often simpler in cartesian coordinates
» DAETS handles resulting 1st kind Lagrangian systems easily

> We streamline this by DAETS's Lagrangian facility and
mechanism facility ...

15/28



Example Lagrangians Lagrangian facility Mechanism facility More examples Conclusion

First... Lagrangian facility

» On top of DAETS, this solves directly from L and the
constraints

» Builds on AD package FADBAD++ which is integral to DAETS
» Computes derivatives “on the fly” behind the scenes
» No symbolic algebra

» Very efficient (thanks to Xiao Li, M.Sc. McMaster U)

» common subexpression elimination through operator
overloading in AD

> sparse algorithms in AD

> sparse linear algebra
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Next... mechanism facility

Building on the previous, our goal is to

1. Theory: Express Lagrangian of mechanism (robot arm etc.) by
x,y, z coordinates of chosen reference points (RPs) on its parts

» In 2D, a rigid body's position is fixed by 2 points on it in
“general position”; in 3D, by 3 points; etc

» Express its PE (if relevant) and KE in terms of world-positions
and velocities of such RPs

» Hence multi-body L = L(q, q) with g = (suitable RPs)

> ...entirely in cartesian coordinates

2. Practice: Create

» text file syntax/semantics for describing a class of mechanisms
» C++ API to convert this to a Lagrangian that DAETS then
handles by the Lagrangian facility
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What mechanism facility currently provides
We are tidying up 2D before moving to 3D
» Named Points; same point on two parts means joined there

» One declares some points fixed in world frame
> All others are assumed moving

» Parts (a part's name is the list of points on it)
» Rigid body  (dynamics = mass, centroid, moment of inertia)
» Particle (dynamics = mass only)
» Spring (dynamics = stiffness, rest-length)
Optionally mass, then dynamics of a stretchable uniform rod
» Forces

» Constant (in world frame or in local frame) force
Applied at a named point of body, fixed in local frame
» Constant torque on a rigid part
» Time-varying forces still to come—need compile/link stage
» Collinears
» Constrains 3 or more points to lie on a straight line
Useful for specifying various kinds of joint

18/28



Mechanism?2

» Rigid rods CK, KM,
DL, LM, EF, FP
and triangle plate
CDFE

» Springs AC, BD

» Point masses at
M, N, P

» Collinear G, H, P
>
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https://youtu.be/w3GlwNh2kYc
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Andrews squeezing mechanism

The original diagram.
cul K3 is star-shaped and
K5, K7 are not straight!

The MBS diagram

Fig. 0.1, Seven body mechanism (Schiehlen 1990, with permission)

Part of MBS Multi-Body Systems Benchmark in OpenSim

Also in the Test Set for IVP Solvers, where ...
> It is formulated as an index 3 DAE in angle coordinates

v

v

» Equations are not pretty at all

We modeled and solved in cartesian coordinates

v

v

Confirmed very close agreement between the two solutions
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http://rehabenggroup.github.io/MBSbenchmarksInOpenSim/benchmarks/A03_AndrewsMechanism.html
https://archimede.dm.uniba.it/~testset/report/andrews.pdf
https://youtu.be/RtmqUnv1tak
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Further examples

>

These are in 3D so don't use the mechanism facility, but do
use the Lagrangian facility

John P extended the basic rigid body reference point theory
to 3D and we are working out the implications

Indeed we can do rigid body dynamics in any dimension

QR factorization is key to the algorithm
No quaternions

Example: multi-pendulum made of genuinely 3D rods joined
by Universal Joints (Hooke—Cardan joints)

UJs transmit torque round a bend—permit 2 DOF of relative
angular position but forbid relative rotation about rod-axes
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https://youtu.be/wIByh-qxMes
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example: Particle-spring system

3 x b particles

Rectangular grid of
m X n particles
connected by damped
springs

A test for cloth
simulation in movies

Particle (4, j) is attached to
(t£1,j)and (i,j+1)fori=1:m, j=1:n

Indext=0o0orm+41, resp. j =0 or n+ 1, means a fixed
position
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Particle-spring cont.

» Each particle (3, j)
> coordinates r;; = (i, ij, 2i;) full 3D motion
» mass M

v

Each spring
> stiffness &
> length at rest [
» damping k4 x stretch-rate (except the boundary ones)

v

Spacing Az and Ay between particles in 2 and y directions

v

Initially all particles at rest in zy plane, we push the middle
particle upwards

90 x 90 particles, 24 300 second-order ODEs

v
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https://youtu.be/RKVB-cD12gc
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Particle-spring cont

» Lagrangian is

L=4MY > |iyl? = Mgy Y 2

i=1j=1 i=1 j=1

— 3k DD (rig —ryl =)+

n
i=1 j=0 j=

m
(Irivay —rigl = 1)?
17=0

» We use Rayleigh's dissipative function

m n—1

n m
1 . . 2 1 . . 2
R = 5kq E g [7ij+1 — Tl + 5ka E g i1, — Tij

=1 j=1 Jj=11:i=1
» We encode L and R—that's all
» DAETS solves a sparse, second-order ODE of size 3-m - n
d 0L oL OR
dtory  Oryg | O

=0, t=1:m, j=1:n
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Conclusions and further work

» “Data, Lagrangian, Action” works as a practical tool.
We aim now to develop 3D, and improve user interface

» An implication for teaching the subject:

» Since high-index DAEs are now as easy to solve as ODEs, a
Lagrangian formulation needn’t avoid constraints

» So rigid-body mechanical systems can be modeled in cartesian
coordinates, which is simpler

» This makes the concept so easy that Lagrangian stuff can be
taught at undergraduate level
After doing some simple cases from first principles, students
can experiment with a tool like the mechanism facility

» But there's a big new thing for Ned & me to learn . ..

25/28



Example Lagrangians Lagrangian facility Mechanism facility More examples Conclusion

The natural coordinates community

Ned & | have only recently learnt of work going on for ~ 30 years,
on multi-body modelling by “natural coordinates”

» Their basic object is the rigid-body shift+rotate map
R — p(t) + Q(t)R stored as 3 + 3 x 3 = 12 scalars per body

» Our basic object is point x(¢). In 3D, three points define body
position, making 3 x 3 = 9 scalars per body (less, as points
are shared)

> They mostly have Finite Elements background so very
different mind-set from ours.
Tasks considered serious but DAETS probably handles well:

» Finding e.g. equilibrium configuration
» Analysis of kinematic chains
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References
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Outer planets
Gravitating masses in 2D
Spring mass with 3 pendula

vV vy VvVyy
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Appendix: YAML text for Andrews squeezing mechanism

Complete description except for PhysicalParams values and Title.
The boxed text specifies the topology, geometry and dynamics.

Dimension: 2 SolverParams:
Mode: solve
PartData: Integration:
Fixed: { O: [], A: [xa, ya ], B: [xb, ybl, C: [ xc, yel } tol: le-1d
Rigids: order: 17
OF: { Geom: [ [rr] ), Dyna: [ [ ra ], ml, il ] }
( Geom: [ [d ] ], Dyna: [ [ da ], m2, i2 ] } Display:
{ Geom: [ [ss], [sc, sd] 1, Dyna: [ [sa, sbl, m3, i3 1} tableau: false
{ Geom: [ [e] 1, Dyna: [ [ea ], md, i4 ] } Ivs: false
{ Geom: [ [zt] ], Dyna: [ [ta, tbl, m5, i5 ] } consIVs: false
{ Geom: [ [zf] ], Dyna: [ [zf-fa], m6, i6 ] } solution: false
AH: { Geom: [ [u] 1, Dyna: [ [ua, -ubl, m7, i7 ] } stats: false
springs: progress: false
cp: [ c0, 10 ] OutFile:
tformat: ‘% .17e’
AppliedForces: gformat: '% .17e’
ConstTorques: { OF: mom } points: [ D: 2, E: 2, F: 2, G: 2, H: 2]
angles: [ OF: 1 ]
Animation:
ProblemData: view: [-5, 271
£0: 0.0 physParamsToShow: [$beta0, $c0, $mom]
tend: 0.03 Skeleton:
positions: zscale: 0.0005
E: [-2e-02, le-03] fleshoutwid: 0.0015
[rrxcos(betal), [rrsin(beta0),fixed]] Skels:
[-36-02, 1e-02) BED: {path: XBXEXDX, newpts: [ X , [sa, sb]
[-3e-02, -le-02] AG: {path: YAYGY, newpts: [ Y , [ta, tb] ]
AH: {path: ZHZAZ, newpts: [ 2 , [ua, -ub]

velocities:

# all 0’s by default

1

1
}
}

b
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