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OPTIMAL CONTROL

Generic case

maxJ(u()) = fy hix(2), U(t))dt +9(x(T))

s.t. x=f(x(t),u(t), 0<t<
x(0) = xo, h(x(t)) € H, O<t T
u(t) e, vt

cost function)

dynamical constraint)
boundary conditions)
bounded control)

P,

-+ The dynamical constraint coupled with the boundary conditions is an
IVP-ODE depending on a control function u(t);

- the cost function is a pay-off function where x(t) is the solution for the
dynamical constraint, h is the running cost and g is the terminal cost.
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VALIDATED SIMULATION OF DYNAMICAL SYSTEMS

An IVP-ODE is defined by

x=f(x)
X(O) € Xy C Rn, te [O,tend] .

The goal is to compute x(t; Xo) = {x(t; x0) | Xo € Xo}.

state

Phase 1 a priori enclosure [%] [L] picard-Lindelof
of ] tighter approx.
3
{X(tes xi) | te € [ty tia] , Xi € [xi]} C/
Phase 2 tight enclosure of
[Xiy1] at time ti,q. ime
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DYNIBEX: A VALIDATED SIMULATION USING RUNGE-KUTTA METHODS

Dynibex
- C++ library using ibex (constraint processing over real numbers);
- proof of existence and uniqueness of solution for ODEs and DAEs;
- combined with contractors (HC4), easy to use in branching algorithms;
- verification of temporal constraints.
Example of temporal constraints
- Stayed in A until T < teng :
vt e [0,8], {y(t:ivo) | o € [vo]} C int(A)

- Included in A inside [0, teng] :

3t € [0, tena] , {Y(t;¥0) | vo € [Yol} C int(A).
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EXAMPLE

System of Rossler: Initial states: (0; —10.3; 0.03), some parameters:
a=0.2,b=02,c=57

X=-y-—z
y=x+ay
z=b+2z(x—c¢)
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COMPUTATION OF THE COST FUNCTION

Foru C [u] €, x € f(x(t),[u]) and

J(u(-))

/ h(x(t), u(t))dt + g(x(T))
- Z/ (x(), u(t))dt + g (x(T))

€ Z(tm — t)h([x], [ul) + 9(xr])

i=0
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nJ(a)x J(u() = fOT h(x(t),u(t))dt+ g(x(T)) (cost function)

(

st x=f(x(t),u(t), 0<t< (dynamical constraint)
X(0) =xo, h(x(t)) €H, 0 <t <T (boundary conditions)
utyeu, vt (bounded control)

Restriction

- Particular kind of dynamics:

- the integral is provided by the dynamical constraints,
- the set of possible control u(t) is known and is discrete;

- the cost function is monotonic;

- the boundary conditions only occurs at a specific time 7.
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CONTEXT: SWITCHING MODE SYSTEM

n-mode hybrid system

X = fi(x)

(8‘) X(t,‘) = X

in the time interval [t;, tj]

- fi:R™" — R™;
- X; € R™ is the initial condition for all modes 0 <i < n—1.

A sequence {(&), ..., (Sk)} corresponds to the switching of control law.
- X is fixed; 4

- X; is taken as the solution at time
{7 of (S,'_1).

(So) | (S1) 1 (S)) | (S3) !

=- not necessarily continuously ' ' ' '
differentiable. P t
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PROBLEM STATEMENT

Our problem can be modeled using the following optimization problem

, max g(x(1)) (cost function)
15--5tn—1
s.t. V0<i<n-—1,(S) (dynamical constraint)
h(x(r)) > 0 (reachability constraint)
T E [tnfw,tn]
with
- the decision variables ty, ..., t,—1 € R] the search space for the different
times;

- the cost function g : R™ — R on the state variable at given time
T € [tn_‘l7 tn],

- some constraints defined by the dynamical systems (S;) and the times t;;

- a reachability constraint using h : R™ — R.
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EXAMPLE: GODDARD’S ROCKET

Model of the ascent of a rocket in the atmosphere:

with the parameters

[ max m(T) 1 . b=2,
st G:\Z—Avexsﬁ(’?ﬂ—f)) - Viz Zmax ;OO.Z
m = —bu o
u(.) € 10,1 - k=500,
r(0) =1,v(0) = 0,m(0) =1 *ro="1Vvo=0mo=1,
I r(T) > Rr 1 rr=101

According to the time t:

3.5 forte [O,tw] (So)
u(t) = ¢ 3.5tanh(1+1t) forte [ti,ta] (S1)
0 fort € [t2, T] (S2)
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Algorithm 1: simu(ty, t,, max) - simulates the system from 0 to T.
Input: time ty, t, to switch dynamics; current maximum mass max
Output: the mass m or 0 if simulation will not produce a better solution
([re], Vs ], [me]) < simulation of xo using (So) from 0 to ty;
if m;, < max then

| return0;
([re], [ve,], [m,]) < simulation using (Si) from & to ty;

if m, < max then
| return O;

([rr]s [vr], [m7])  simulation using (S,) from t, to T;
if - > Rr then

‘ return [mr];

else

L return O;
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Algorithm 2: finds the optimal switching times
Input: set of dynamics {(So), (1), (S2)}
Output: switching times ti,max and t2,max

max < 0;

forty <~ 0toT —edo

fort, « ti+eto T do

[m, m] « simu(ti, t2);

if m > max then

m <+ max;

t,max < t1;

0 max b

else

break; // Due to monotonicity of the cost
function

return t,max and ta,max;
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RESULTS
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Figure 1: Mesh for t; w.rt. ty
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RESULTS
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Figure 2: Optimal controller
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Conclusion

- Promising results on the computation of optimal switching mode;
- easy-to-use tool development;

- benefits shown on an example.

Perspectives
To release restrictions to handle the problem in its generality
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