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Optimal control

Generic case


max
u(.)

J(u(.)) =
∫ T
0 h(x(t),u(t))dt + g(x(T)) (cost function)

s. t. ẋ = f (x(t),u(t)), 0 < t 6 T (dynamical constraint)
x(0) = x0, h(x(t)) ∈ H, 0 < t 6 T (boundary conditions)
u(t) ∈ U , ∀t (bounded control)



• The dynamical constraint coupled with the boundary conditions is an
IVP-ODE depending on a control function u(t);

• the cost function is a pay-off function where x(t) is the solution for the
dynamical constraint, h is the running cost and g is the terminal cost.
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Validated simulation of dynamical systems

An IVP-ODE is defined byẋ = f (x)
x(0) ∈ X0 ⊆ Rn, t ∈ [0, tend] .

The goal is to compute x(t;X0) = {x(t; x0) | x0 ∈ X0}.

Phase 1 a priori enclosure [x̃i]
of

{x(tk; xi) | tk ∈ [ti, ti+1] , xi ∈ [xi]}

Phase 2 tight enclosure of
[xi+1] at time ti+1. time

st
at
e

Picard-Lindelof

tighter approx.

t
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Dynibex: a validated simulation using Runge-Kutta methods

Dynibex

• C++ library using ibex (constraint processing over real numbers);

• proof of existence and uniqueness of solution for ODEs and DAEs;

• combined with contractors (HC4), easy to use in branching algorithms;

• verification of temporal constraints.

Example of temporal constraints

• Stayed in A until t̃ < tend :

∀t ∈
[
0, t̃

]
, {y(t; y0) | y0 ∈ [y0]} ⊆ int(A)

• Included in A inside [0, tend] :

∃t ∈ [0, tend] , {y(t; y0) | y0 ∈ [y0]} ⊆ int(A).
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Example

System of Rossler: Initial states: (0;−10.3; 0.03), some parameters:
a = 0.2,b = 0.2, c = 5.7 

ẋ = −y − z
ẏ = x + ay
ż = b+ z(x − c)
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Computation of the cost function

For U ⊆ [u] ∈, ẋ ∈ f (x(t), [u]) and

J(u(.)) =

∫ T

0
h(x(t),u(t))dt + g(x(T))

=
n∑
i=0

∫ ti+1

ti
h(x(t),u(t))dt + g(x(T))

∈
n∑
i=0

(ti+1 − ti)h([x̃i] , [u]) + g([xT ])
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
max
u(.)

J(u(.)) =
∫ T
0 h(x(t),u(t))dt + g(x(T)) (cost function)

s. t. ẋ = f (x(t),u(t)), 0 < t 6 T (dynamical constraint)
x(0) = x0, h(x(t)) ∈ H, 0 < t 6 T (boundary conditions)
u(t) ∈ U , ∀t (bounded control)



Restriction

• Particular kind of dynamics:
• the integral is provided by the dynamical constraints,
• the set of possible control u(t) is known and is discrete;

• the cost function is monotonic;

• the boundary conditions only occurs at a specific time τ .
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Context: switching mode system

n-mode hybrid system

(Si)

ẋ = fi(x)
x(ti) = xi

in the time interval [ti, ti+1]

• fi : Rm → Rm;

• xi ∈ Rm is the initial condition for all modes 0 6 i 6 n− 1.

A sequence {(S1), . . . , (Sk)} corresponds to the switching of control law.

• x0 is fixed;

• xi is taken as the solution at time
ti of (Si−1).

⇒ not necessarily continuously
differentiable. tt

x

t1 t2 t3 t4

x0

(S0) (S1) (S2) (S3)
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Problem statement

Our problem can be modeled using the following optimization problem
max

t1,...,tn−1
g(x(τ)) (cost function)

s. t. ∀0 6 i 6 n− 1, (Si) (dynamical constraint)
h(x(τ)) > 0 (reachability constraint)
τ ∈ [tn−1, tn]


with

• the decision variables t1, . . . , tn−1 ∈ Rn
+ the search space for the different

times;

• the cost function g : Rm → R on the state variable at given time
τ ∈ [tn−1, tn];

• some constraints defined by the dynamical systems (Si) and the times ti;

• a reachability constraint using h : Rm → R.
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Example: Goddard’s Rocket

Model of the ascent of a rocket in the atmosphere:



max m(T)
s.t. ṙ = v

v̇ = u−Av exp(k(1−r))
m − 1

v2

ṁ = −bu
u(.) ∈ [0, 1]
r(0) = 1, v(0) = 0,m(0) = 1
r(T) > RT



with the parameters

• b = 2,

• Tmax = 0.2,

• A = 310,

• k = 500,

• r0 = 1, v0 = 0, m0 = 1,

• RT = 1.01.

According to the time t:

u(t) =


3.5 for t ∈ [0, t1] (S0)
3.5 tanh(1+ t) for t ∈ [t1, t2] (S1)
0 for t ∈ [t2, T] (S2)
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Algorithm 1: simu(t1, t2,max) – simulates the system from 0 to T .
Input: time t1, t2 to switch dynamics; current maximum mass max
Output: the mass m or 0 if simulation will not produce a better solution
([rt1 ], [vt1 ], [mt1 ])← simulation of x0 using (S0) from 0 to t1;
if mt1 ≤ max then

return 0;
([rt2 ], [vt2 ], [mt2 ])← simulation using (S1) from t1 to t2;
if mt2 ≤ max then

return 0;
([rT ], [vT ], [mT ])← simulation using (S2) from t2 to T ;
if rT > RT then

return [mT ];
else

return 0;
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Algorithm 2: finds the optimal switching times
Input: set of dynamics {(S0), (S1), (S2)}
Output: switching times t1,max and t2,max
max ← 0;
for t1 ← 0 to T − ε do

for t2 ← t1 + ε to T do
[m,m]← simu(t1, t2);
if m > max then

m← max;
t1,max ← t1;
t2,max ← t2;

else
break; // Due to monotonicity of the cost
function

return t1,max and t2,max ;
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Results
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Figure 1: Mesh for t2 w.r.t. t1
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Results

Figure 2: Optimal controller
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Conclusion

• Promising results on the computation of optimal switching mode;

• easy-to-use tool development;

• benefits shown on an example.

Perspectives
To release restrictions to handle the problem in its generality
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Thank you
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