

Transformation of Dynamic Systems Into a Cooperative Form to Exploit Advantages in Interval-based Controller Design

SWIM 2018: Summer Workshop on Interval Methods Rostock, Germany, July 27th, 2018

Julia Kersten, Andreas Rauh, Harald Aschemann

Chair of Mechatronics University of Rostock, Germany

Contents

1 Short Introduction on Cooperative Systems

2 Transformations of Initially Non-Cooperative Systems

- 3 Application Scenarios
- 4 Conclusions and Outlook

Introduction		
00000		

Why cooperativity?

To simplify

- computation of guaranteed state enclosures
- design of interval observers
- forecasting worst-case bounds for selected system outputs in predictive control
- identification of unknown parameters
- ...

Avoiding the use of general-purpose, set-valued solvers

Overestimation due to the wrapping effect may lead to (interval) bounds that are much wider than the actually reachable sets of states.

Introduction 00000	Application 000000000	

Consider the autonomous system

$$\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t)) , \ \mathbf{x} \in \mathbb{R}^n$$

Criterion for cooperativity

Jacobian matrix

$$\mathbf{J} = \frac{\partial \mathbf{f}\left(\mathbf{x}\right)}{\partial \mathbf{x}}$$

with all off-diagonal elements $J_{i,j}$, $i, j \in \{1, ..., n\}$, $i \neq j$ strictly non-negative according to

$$J_{i,j} \ge 0$$
, $i, j \in \{1, \dots, n\}$, $i \ne j$

Introduction 00000	Application 000000000	

Consider the autonomous system

$$\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t)) , \ \mathbf{x} \in \mathbb{R}^n$$

Positivity of the system

Guarantee that state trajectories $\mathbf{x}(t)$ starting in the positive orthant

$$\mathbb{R}^n_+ = \{ \mathbf{x} \in \mathbb{R}^n \mid x_i \ge 0 \quad \forall i \in \{1, \dots, n\} \}$$

stay in this positive orthant for all $t \ge 0$ because $\dot{x}_i(t) = f_i(x_1, \ldots, x_{i-1}, 0, x_{i+1}, \ldots, x_n) \ge 0$ holds for all components $i \in \{1, \ldots, n\}$ of the state vector as soon as the state x_i reaches the value $x_i = 0$

Introduction 00000	Application 000000000	

Interval representation of domain of reachable states

$$[\mathbf{x}] = [\mathbf{x}](t) = \begin{bmatrix} \underline{[x_1(t); \overline{x}_1(t)]} \\ \vdots \\ \underline{[x_n(t); \overline{x}_n(t)]} \end{bmatrix}$$

with the initial states

$$[\mathbf{x}_0] = [\mathbf{x}](0) = \begin{bmatrix} [\underline{x}_1(0) \ ; \ \overline{x}_1(0)] \\ \vdots \\ [\underline{x}_n(0) \ ; \ \overline{x}_n(0)] \end{bmatrix}$$

and the vector components $[x_i] = [\underline{x}_i; \overline{x}_i]$, $i \in \{1, \ldots, n\}$, where $\inf ([x_i]) = \underline{x}_i$ is the infimum $\sup ([x_i]) = \overline{x}_i$ is the supremum
 Introduction
 Transformations of Initially Non-Cooperative Systems
 Application
 Conclusions

 000
 000000000
 000000000
 0

Cooperative System Models Derived From First-Principle

Figure: Graphical representation of a dynamic system.

Derivation of the ODEs

$$\dot{x}_i = -\sum_{j=1}^n p_{ij} x_i + \sum_{j=1, i \neq j}^n p_{ji} x_j$$

with $p_{ii} \in \mathbb{R}$, $p_{ij} \ge 0$ and $p_{ji} \ge 0$, $i \ne j$

э

< □ > < 同 >

 Introduction
 Transformations of Initially Non-Cooperative Systems
 Application
 Conclusions

 00000
 000000000
 0000000000
 0
 0

Cooperative System Models Derived From First-Principle

Figure: Graphical representation of a dynamic system.

State-space representation

$$\dot{\mathbf{x}} = \begin{bmatrix} -\sum_{j=1}^{n} p_{1j} & p_{21} & \dots & p_{n1} \\ p_{12} & -\sum_{j=1}^{n} p_{2j} & \dots & p_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ p_{1n} & p_{2n} & \dots & -\sum_{j=1}^{n} p_{nj} \end{bmatrix} \mathbf{x} ,$$

Introduction	Application 000000000	

Reformulation into a quasi-linear state-space representation

 $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u})$

For linear systems the state equations are equivalent to

 $\dot{\mathbf{x}} = \mathbf{A} \cdot \mathbf{x} + \mathbf{B} \cdot \mathbf{u}$

and for non-linear formulations a quasi-linear form (by factoring out selected state variables) is obtained

 $\dot{\mathbf{x}} = \mathbf{A}(\mathbf{x}) \cdot \mathbf{x} + \mathbf{B}(\mathbf{x}) \cdot \mathbf{u}$

Cooperativity

Here, ${\bf A}$ or ${\bf A}({\bf x})$ is supposed to be Metzler and Hurwitz for asymptotically stable systems

	Transformations of Initially Non-Cooperative Systems		
00000	000000000	000000000	

Preparations for the transformation

- $\mathbf{x} = \mathbf{x}_{\mathrm{s}} = \mathbf{0}$ desired operating state
- $\mathbf{u}=\mathbf{u}_{\mathrm{s}}=\mathbf{0}$ without loss of generality for the steady-state input

with the feedback controller according to

$$\mathbf{u} = -\mathbf{K}\mathbf{x}$$
 or $\mathbf{u} = -\mathbf{K}(\mathbf{x})\cdot\mathbf{x}$

leading to

$$\dot{\mathbf{x}} = (\mathbf{A}(\mathbf{x}) - \mathbf{B}(\mathbf{x}) \cdot \mathbf{K}(\mathbf{x})) \cdot \mathbf{x} = \mathbf{A}_{\mathrm{C}}(\mathbf{x}) \cdot \mathbf{x}$$

Transformations of Initially Non-Cooperative Systems	
000000000	

General transformation

$$\mathbf{z}(t) = \mathbf{\Theta}^{-1} \mathbf{x}(t)$$
 with $\dot{\mathbf{z}}(t) = \mathbf{N} \cdot \mathbf{z}(t)$

For general applications without diagonally dominant system matrices, the transformation consists of

$$\tilde{\mathbf{z}}(t) = \tilde{\mathbf{T}}^{-1}\mathbf{x}(t)$$

to get a diagonally dominant system matrix and

$$\mathbf{z}(t) = \mathbf{T}^{-1}\tilde{\mathbf{z}}(t) = \mathbf{T}^{-1} \cdot \tilde{\mathbf{T}}^{-1} \mathbf{x}(t) = (\tilde{\mathbf{T}} \cdot \mathbf{T})^{-1} \mathbf{x}(t)$$

to ensure a Metzler structure, resulting in the overall transformation matrix $\Theta=\tilde{\mathbf{T}}\cdot\mathbf{T}$

Transformations of Initially Non-Cooperative Systems	Application	
000000000		

Structure of the transformation matrix

Θ may be a time-invariant or time-varying matrix according to the following distinction

Introduction 00000

Systems With Purely Real Eigenvalues

Preliminary

$$\mathbf{Z}_{\mathrm{a}} - \boldsymbol{\Delta} \leq \mathbf{Z} := \mathbf{A}_{\mathrm{C}} \leq \mathbf{Z}_{\mathrm{a}} + \boldsymbol{\Delta}$$

with Δ , which consists of the (symmetric) worst-case bounds of all entries in $[\mathbf{A}]_{\mathrm{C}}$ and $\mathbf{Z}_{\mathrm{a}} = \mathbf{Z}_{\mathrm{a}}^{T}$ as a symmetric midpoint matrix and

$$\mathbf{R} = \mu \mathbf{E}_n - \mathbf{\Gamma}$$

as Metzler matrix, which has the same eigenvalues as \mathbf{Z}_{a} with

 $\mu \in \mathbb{R}$ constant

 $\mathbf{\Gamma} \in \mathbb{R}^{n imes n}$ diagonal matrix

 $\mathbf{E}_n \in \mathbb{R}^{n imes n}$ matrix with all elements equal to 1 and

 $oldsymbol{\Gamma} =
ho \mathbf{I}_n$ with $ho > \mu$ and the identity matrix \mathbf{I} of order n

Transformations of Initially Non-Cooperative Systems	Application	
000000000		

Assumption

lf

$$\operatorname{eig}(\mathbf{R}) = \operatorname{eig}(\mathbf{Z}_{\mathrm{a}})$$

there exists an orthogonal matrix $\mathbf{S} \in \mathbb{R}^{n \times n}$ such that $\mathbf{S}^T \mathbf{Z} \mathbf{S}$ or $\Theta^T \mathbf{Z} \Theta$, respectively, is Metzler provided that

$$\mu > n ||\mathbf{\Delta}||_{\max} ,$$

where $|| \Delta ||_{\max}$ denotes the maximum absolute value of Δ

Transformations of Initially Non-Cooperative Systems	Application	
000000000		

Assumption

lf

$$\operatorname{eig}(\mathbf{R}) = \operatorname{eig}(\mathbf{Z}_{a})$$

there exists an orthogonal matrix $\mathbf{S} \in \mathbb{R}^{n \times n}$ such that $\mathbf{S}^T \mathbf{Z} \mathbf{S}$ or $\Theta^T \mathbf{Z} \Theta$, respectively, is Metzler provided that

$$\mu > n ||\mathbf{\Delta}||_{\max} ,$$

where $|| \Delta ||_{\max}$ denotes the maximum absolute value of Δ

Aim

Computationally feasible optimization problem formulated with LMI constraints to find a suitable transformation matrix ${\bf S}$

Transformations of Initially Non-Cooperative Systems	Application 000000000	

Choosing a diagonal matrix \mathbf{Z}_a

If the system is

- ${\small \textcircled{0}}$ diagonally dominant: ${\bf Z}_a$ represents the diagonal entries of the original system matrix

 $\hat{\mathbf{A}}_{C} = \tilde{\mathbf{T}}^{-1} \mathbf{A}_{C} \tilde{\mathbf{T}}$

such that the element-wise defined interval midpoint matrix $\operatorname{mid}\{[\mathbf{A}]_{\mathbf{C}}\}\$ is transformed into a diagonal structure (except for numerical round-off errors). If $\operatorname{mid}\{[\mathbf{A}]_{\mathbf{C}}\}\$ possesses n linearly independent real-valued eigenvectors, their floating-point approximation is used to define the matrix $\tilde{\mathbf{T}}$.

< A >

∃ ► < ∃ ►</p>

Transformations of Initially Non-Cooperative Systems	Application	
000000000		

Choosing Δ

$$\delta = \max\left(|[\mathbf{A}]_{\mathrm{C}} - \mathbf{Z}_{\mathrm{a}}|\right) \quad \text{or} \quad \delta = \max\left(|[\hat{\mathbf{A}}]_{\mathrm{C}} - \mathbf{Z}_{\mathrm{a}}|\right)$$

with $\mathbf{\Delta} = \delta \cdot \mathbf{E}_n$

Further specifications

$$\mu^{\star} = n ||\mathbf{\Delta}||_{\max}$$

marks the lower bound for μ and

$$\mathbf{R} = \mathbf{S}^T \mathbf{Z}_{\mathbf{a}} \mathbf{S}$$
 and $\mathbf{S}^T \mathbf{S} = \mathbf{I}$

need to be satisfied

Reformulation Into an Optimization Problem

Orthogonality of S

$$-\mathbf{R} + \mathbf{S}^T \mathbf{Z}_a \mathbf{S} \succ \mathbf{0}$$
 and $\mathbf{I} - \mathbf{S}^T \mathbf{S} \succ \mathbf{0}$

is converted by application of the Schur complement formula according to

$$\begin{bmatrix} -\mathbf{R} & \mathbf{S}^T \\ \mathbf{S} & -\mathbf{Z}_{\mathrm{a}}^{-1} \end{bmatrix} \succ \mathbf{0} \quad \text{and} \quad \begin{bmatrix} \mathbf{I} & \mathbf{S}^T \\ \mathbf{S} & \mathbf{I} \end{bmatrix} \succ \mathbf{0}$$

Introduction Transformations of Initially Non-Cooperative Systems Application Conclusions

Reformulation Into an Optimization Problem

Known specifications to other variables

$$\mathbf{R} = \bar{\mu} \mathbf{E}_n - \mathbf{\Gamma} \; , \; \; \bar{\mu} > \mu$$

where the LMI constraints

$$\mathbf{\Gamma} \succ \mathbf{0}$$
 and $\mathbf{R}^T \mathbf{Q} + \mathbf{Q} \mathbf{R} \prec \mathbf{0}$

with $\mathbf{Q} \succ \mathbf{0}$ (Hurwitz stability of \mathbf{R})

Overall cost function

$$J = \operatorname{tr}(\boldsymbol{\Gamma}) + \operatorname{tr}(\mathbf{Z}_{\mathbf{a}}\mathbf{S} - \breve{\mathbf{S}}\mathbf{R}) - \kappa \cdot \operatorname{tr}(\breve{\mathbf{S}}^{T}\mathbf{S} - \mathbf{I})$$

with the problem-dependent parameter $\kappa>0$ and the solution of the last successful evaluation of the LMI-constrained optimization task $\breve{\mathbf{S}}$

Systems With Purely Conjugate-Complex Eigenvalues

Preliminaries

- Generally only time-varying transformations possible (exception are exactly known systems)
- Uncertainty is mapped into the position of the eigenvalues

Systems With Purely Conjugate-Complex Eigenvalues

Figure: Possible positions of conjugate-complex eigenvalues.

Interval hull $[\sigma_i] = [\underline{\sigma}_i; \ \overline{\sigma}_i] \text{ and } [\omega_i] = [\underline{\omega}_i; \ \overline{\omega}_i]$

J. Kersten et al.: Transformation of Dynamic Systems Into a Cooperative Form

Transformations of Initially Non-Cooperative Systems	Application 000000000	

Note

with j

The presented approach is only valid for disjoint eigenvalue domains

Transformation matrix

The number of considered eigenvalues is reduced to

$$\tilde{n} = \frac{n}{2}$$

for a system with \boldsymbol{n} states, because of conjugate-complex pairs

$$\tilde{\mathbf{T}} = \left[\tilde{\mathbf{T}}_1, \dots, \tilde{\mathbf{T}}_{\tilde{n}}\right], \text{ where } \tilde{\mathbf{T}}_j = [\Re\{[\mathbf{v}_j]\}, \Im\{[\mathbf{v}_j]\}]$$

 $\tilde{\mathbf{v}} \in \{1, \dots, \tilde{n}\}$

Transformed system

Results in the real-valued Jordan canonical form

$$\tilde{\mathbf{A}} = \text{blkdiag} \left(\tilde{\mathbf{A}}_1, \dots, \tilde{\mathbf{A}}_{\tilde{n}} \right) \text{ with } \tilde{\mathbf{A}}_j = \begin{bmatrix} [\sigma_j] & [\omega_j] \\ -[\omega_j] & [\sigma_j] \end{bmatrix}$$

The time-variant transformation is done by

$$\mathbf{z} = \mathbf{T}^{-1}(t) \cdot \tilde{\mathbf{z}}$$
 with
 $\mathbf{T}^{-1}(t) = \text{blkdiag}\left(\mathbf{T}_1^{-1}(t), \dots, \mathbf{T}_{\tilde{n}}^{-1}(t)\right) = \mathbf{T}^T(t)$

and the orthogonal blocks

$$\mathbf{\Gamma}_{j} = \begin{bmatrix} \cos([\omega_{j}]t) & \sin([\omega_{j}]t) \\ -\sin([\omega_{j}]t) & \cos([\omega_{j}]t) \end{bmatrix}$$

for $j \in \{1, \ldots, \tilde{n}\}$

Transformations of Initially Non-Cooperative Systems	
000000000	

Resulting state-space representation of the system

$$\dot{\mathbf{z}} = \dot{\mathbf{T}}^{T}(t) \cdot \tilde{\mathbf{z}} + \mathbf{T}^{T}(t) \cdot \dot{\tilde{\mathbf{z}}}$$
$$= \left[\left[\frac{\mathrm{d}\mathbf{T}^{T}(t)}{\mathrm{d}t} + \mathbf{T}^{T}(t)\tilde{\mathbf{A}} \right] \mathbf{T}(t) \right] \mathbf{z} = \mathbf{N} \cdot \mathbf{z}$$

Regarding the structure of N

Symbolic simplifications in terms of the exact values ω_i^*

$$\mathbf{N} = \text{blkdiag}\left(\sigma_1 \mathbf{I}, \dots, \sigma_{\tilde{n}} \mathbf{I}\right) \ , \ \mathbf{I} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Transformations of Initially Non-Cooperative Systems	Application	
000000000		

Resulting state-space representation of the system

$$\dot{\mathbf{z}} = \dot{\mathbf{T}}^{T}(t) \cdot \tilde{\mathbf{z}} + \mathbf{T}^{T}(t) \cdot \dot{\tilde{\mathbf{z}}}$$
$$= \left[\left[\frac{\mathrm{d}\mathbf{T}^{T}(t)}{\mathrm{d}t} + \mathbf{T}^{T}(t)\tilde{\mathbf{A}} \right] \mathbf{T}(t) \right] \mathbf{z} = \mathbf{N} \cdot \mathbf{z}$$

Asymptotic stability

Since N depends on the system's eigenvalues, Hurwitz stability is guaranteed for $\overline{\sigma}_j < 0$. Extrema of the conjugate-complex eigenvalues are obtained by building the hull over their real and imaginary parts

$$[\sigma_j] = [\min(\sigma_j); \max(\sigma_j)] , [\omega_j] = [\min(\omega_j); \max(\omega_j)] .$$

System With Purely Real Eigenvalues

Figure: Control of an inverted pendulum on a moving carriage.

Nonlinear differential equations

$$ma^{2} \cdot \ddot{\alpha} - ma \cdot \cos(\alpha) \cdot \ddot{x} - mga \cdot \sin(\alpha) = 0,$$

$$(M+m) \cdot \ddot{x} - ma \cdot \cos(\alpha) \cdot \ddot{\alpha} + ma \cdot \sin(\alpha) \cdot \dot{\alpha} = F$$

	Application 000000000	

Quasi-linear state-space representation

Introducing an underlying velocity control with \boldsymbol{u} as the desired carriage velocity

$$T_1 \cdot \ddot{x} + \dot{x} = u$$

$$\dot{\mathbf{x}} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \frac{g \cdot \mathbf{si}(\alpha)}{a} & 0 & 0 & -\frac{\cos(\alpha)}{T_1 a} \\ 0 & 0 & 0 & -\frac{1}{T_1} \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ 0 \\ \frac{\cos(\alpha)}{T_1 a} \\ \frac{1}{T_1} \end{bmatrix} u$$

$$y = \begin{bmatrix} -a \cdot \mathbf{si}(\alpha) & 1 & 0 & 0 \end{bmatrix} \mathbf{x} , \quad \mathbf{si}(\alpha) = \frac{\sin(\alpha)}{\alpha}$$
with the state vector $\mathbf{x} = \begin{bmatrix} \alpha & x & \dot{\alpha} & \dot{x} \end{bmatrix}^T$ and the system input u

000000000 Controlled system for $[\alpha] = [51.4^{\circ}; 51.7^{\circ}]$ $\mathbf{A}_{\mathbf{C}}(\alpha) =$ 0 n 0 0 $a_{31}(\alpha) - k_1 b_3(\alpha) - k_2 b_3(\alpha) - k_3 b_3(\alpha) a_{34}(\alpha) - k_4 b_3(\alpha)$ $-k_1 b_4 - k_2 b_4 - k_3 b_4 a_{44} - k_4 b_4$ $-k_{2}b_{4}$ $a_{44} - k_{A}b_{A}$ $-k_{3}b_{4}$ $[a]_{31} = [-1.25; -1.23] \cdot 10^3$ $[a]_{32} = [12.81; 12.91]$ $[a]_{34} = [1.07; 1.09] \cdot 10^2$ $[a]_{33} = [-2.55; -2.52] \cdot 10^2$ $[a]_{41} = [-4.13; -4.12] \cdot 10^2$ $[a]_{42} = [4.13; 4.14]$ $[a]_{43} = [-81.49; -81.48]$ $[a]_{44} = [34.70; 34.71]$

Application

(日) (同) (三) (三)

э

	Application 000000000	

Transformation matrix

	-0.016	-0.170	-0.016	0.155
$\Theta = VS =$	0.998	0.694	-0.104	-0.462
	0.056	0.309	1.095	-0.012
	0.283	-0.253	-0.504	0.740

				Application 000000	on 0000	
Transformed	system					
Ν	$= \tilde{\mathbf{A}}_{C} \in 1$	$\cdot 10^2 \begin{bmatrix} [a]_{11} \\ [a]_{21} \\ [a]_{31} \\ [a]_{41} \end{bmatrix}$	$ \begin{array}{cccc} [a]_{12} & [a]_{13} \\ [a]_{22} & [a]_{23} \\ [a]_{32} & [a]_{33} \\ [a]_{42} & [a]_{43} \end{array} $	$egin{array}{c} [a]_{14} \ [a]_{24} \ [a]_{34} \ [a]_{44} \end{array}$	with	
$[a]_{11} =$ $[a]_{21} =$	= [-2.124; = [0.152;	-2.100] 0.166]	$[a]_{12} = [$ $[a]_{22} = [$	0.143; -0.057;	0.175] -0.038]	
$[a]_{31} = [a]_{41} =$	$= \begin{bmatrix} 0.064; \\ 0.026; \end{bmatrix}$	0.067]	$[a]_{32} = [$ $[a]_{42} = [$	0.001;	0.005]	
$[a]_{13} =$	$= \begin{bmatrix} 0.061; \\ 0.060 \end{bmatrix}$	0.070]	$[a]_{14} = [$	0.016;	0.047]	
$[a]_{23} =$ $[a]_{33} =$ $[a]_{43} =$	$= [0.000; \\ = [-0.010; \\ - [0.000; \\ - [$	-0.006] -0.008]	$[a]_{24} = [$ $[a]_{34} = [$ $[a]_{44} = [$	0.000; 0.000; -0.024;	0.018] 0.004] -0.008]	
$[a]_{43}$ -	- [0.000,	0.000]	[4]44 — [0.024,	0.000]	

J. Kersten et al.: Transformation of Dynamic Systems Into a Cooperative Form

System With Purely Conjugate-Complex Eigenvalues

Figure: Mechanical model of the wind turbine with an elastic tower.

	Application 000000000	

Ordinary differential equations

$$\begin{bmatrix} \dot{\mathbf{x}} \\ \ddot{\mathbf{x}} \end{bmatrix} = \begin{bmatrix} \mathbf{0} & \mathbf{I} \\ -\mathbf{M}_{\mathrm{TB}}^{-1}\mathbf{K}_{\mathrm{TB}} & -\mathbf{M}_{\mathrm{TB}}^{-1}(\mathbf{D}_{\mathrm{TB}} + \mathbf{h}_{\mathrm{TB}}\mathbf{k}_{\mathrm{T}}^T) \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \dot{\mathbf{x}} \end{bmatrix}$$

with uncertainties in M_{TB} , D_{TB} and K_{TB} due to their dependency on ω_R , k_{dT} and k_{dB}

Parameter domains

$$[\omega_{\rm R}] = [0.7; \ 1.4] \ {\rm s}^{-1}$$
$$[k_{\rm dT}] = [2.5; \ 3.5] \cdot 10^{-2} \ {\rm N} \cdot {\rm s/m}$$
$$[k_{\rm dB}] = [0.5; \ 1.5] \cdot 10^{-2} \ {\rm N} \cdot {\rm s/m}$$

	Application 000000●000	

Transformation

$$[\mathbf{N}] = \operatorname{diag}\left(\left[\sigma_{1}\right], \left[\sigma_{1}\right], \left[\sigma_{3}\right], \left[\sigma_{3}\right]\right)$$

with

$$[\sigma_1] = [-0.105; -0.016]$$
$$[\omega_1] = [3.893; 5.310]$$
$$[\sigma_3] = [-0.068; -0.040]$$
$$[\omega_3] = [1.875; 1.908]$$

æ

≣ ।•

P

	Application 0000000000	

Transformation of tl	ne initial cor	nditions		
$\tilde{\mathbf{T}} = [v_1^{\Re}, v_1^{\Im}, v_3^{\Re},$	$v_3^\Im]$			
$\left[\mathbf{x}\right](0) = \begin{bmatrix} 1.2 \\ 0.2 \end{bmatrix}$	$\begin{array}{c} 5; & 1.5] \\ 5; & 0.5] \\ [0] \\ [0] \\ \end{array}$	$\frac{\tilde{\mathbf{T}}}{\rightarrow}$ $[\mathbf{z}](0) =$	$\begin{bmatrix} [-0.761; \\ [-9.792; \\ [-0.297; \\ [2.609; \end{bmatrix} \end{bmatrix}$	$\begin{array}{c} 0.335] \\ 1.608] \\ 0.619] \\ 5.474] \end{array}$

æ

<ロ> <同> <同> < 回> < 回>

 Introduction
 Transformations of Initially Non-Cooperative Systems
 Application
 Conclusions

 00000
 000000000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

System with real and complex eigenvalues

Figure: Mechanical model of the stacker crane.

	Application 0000000000	

Ordinary differential equations

$$\mathbf{M}\ddot{\mathbf{q}} + \mathbf{D}\dot{\mathbf{q}} + \mathbf{K}\mathbf{q} = \mathbf{h} \cdot [F_{SM} - F_{SR}(\dot{y}_S)]$$

with uncertainties in M and K due to their dependency on κ , a dimensionless Parameter to consider the varying vertical position of the payload x_K

$$\kappa = \frac{x_K}{l}$$

Parameter domains

$$[\kappa] = [0.45; 0.54] \text{ m}$$

	Application	

Transformation

with

$$[\mathbf{N}] = \text{diag}([\sigma_1], [\sigma_2], [\sigma_2], [\sigma_4], [\sigma_5], [\sigma_5])$$
$$[\sigma_1] = [-601.4; -560.1]$$
$$[\sigma_2] = [-27.4; -25.7]$$
$$[\omega_2] = [125.9; 127.5]$$
$$[\sigma_4] = [-7.5; -6.8]$$
$$[\sigma_5] = [-20.2; -17.5]$$
$$[\omega_5] = [19.8; 22.5]$$

æ

- 《圖》 《문》 《문》

		Application 000000000	Conclusions •
Conclusion	5		
 Using advantages of cooperative systems avoiding the wrapping effect simulating lower and upper bounds individually 			
► ret	lecting the characteristics of exactly know	wn systems isfy given requir	ements

• complex eigenvalues: symbolically proven solution

		Application 000000000	Conclusions •
Conclusion			_
Using advantages of cooperative systems			
e osing ► a	voiding the wrapping effect		
simulating lower and upper bounds individually			
► re	effecting the characteristics of exactly know	vn systems	
• purely real eigenvalues: LMI approach to satisfy given requirements			ements

• complex eigenvalues: symbolically proven solution

Outlook

- Optimization of the line-search procedure for the parameter μ
- Performance improvement for higher-dimensional applications
- Extensions to systems with real and conjugate-complex eigenvalues as well as multiple eigenvalues in a joint approach combining both presented procedures

Thank you for your attention!

J. Kersten et al.: Transformation of Dynamic Systems Into a Cooperative Form