Transformation of Dynamic Systems Into a Cooperative Form to Exploit Advantages in Interval-based Controller Design

SWIM 2018: Summer Workshop on Interval Methods
Rostock, Germany, July 27th, 2018

Julia Kersten, Andreas Rauh, Harald Aschemann

Chair of Mechatronics
University of Rostock, Germany

Contents

(1) Short Introduction on Cooperative Systems
(2) Transformations of Initially Non-Cooperative Systems
(3) Application Scenarios
(4) Conclusions and Outlook

Why cooperativity?

To simplify

- computation of guaranteed state enclosures
- design of interval observers
- forecasting worst-case bounds for selected system outputs in predictive control
- identification of unknown parameters

Avoiding the use of general-purpose, set-valued solvers
Overestimation due to the wrapping effect may lead to (interval) bounds that are much wider than the actually reachable sets of states.

Consider the autonomous system

$$
\dot{\mathbf{x}}(t)=\mathbf{f}(\mathbf{x}(t)), \quad \mathbf{x} \in \mathbb{R}^{n}
$$

Criterion for cooperativity

Jacobian matrix

$$
\mathbf{J}=\frac{\partial \mathbf{f}(\mathbf{x})}{\partial \mathbf{x}}
$$

with all off-diagonal elements $J_{i, j}, i, j \in\{1, \ldots, n\}, i \neq j$ strictly non-negative according to

$$
J_{i, j} \geq 0, \quad i, j \in\{1, \ldots, n\}, \quad i \neq j
$$

Consider the autonomous system

$$
\dot{\mathbf{x}}(t)=\mathbf{f}(\mathbf{x}(t)), \quad \mathbf{x} \in \mathbb{R}^{n}
$$

Positivity of the system

Guarantee that state trajectories $\mathbf{x}(t)$ starting in the positive orthant

$$
\mathbb{R}_{+}^{n}=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid x_{i} \geq 0 \quad \forall i \in\{1, \ldots, n\}\right\}
$$

stay in this positive orthant for all $t \geq 0$ because $\dot{x}_{i}(t)=f_{i}\left(x_{1}, \ldots, x_{i-1}, 0, x_{i+1}, \ldots x_{n}\right) \geq 0$ holds for all components $i \in\{1, \ldots, n\}$ of the state vector as soon as the state x_{i} reaches the value $x_{i}=0$

Interval representation of domain of reachable states

$$
[\mathbf{x}]=[\mathbf{x}](t)=\left[\begin{array}{c}
{\left[\underline{x}_{1}(t) ; \bar{x}_{1}(t)\right]} \\
\vdots \\
{\left[\underline{x}_{n}(t) ; \bar{x}_{n}(t)\right]}
\end{array}\right]
$$

with the initial states

$$
\left[\mathbf{x}_{0}\right]=[\mathbf{x}](0)=\left[\begin{array}{c}
{\left[\underline{x}_{1}(0) ; \bar{x}_{1}(0)\right]} \\
\vdots \\
{\left[\underline{x}_{n}(0) ; \bar{x}_{n}(0)\right]}
\end{array}\right]
$$

and the vector components $\left[x_{i}\right]=\left[\underline{x}_{i} ; \bar{x}_{i}\right], i \in\{1, \ldots, n\}$,
where $\inf \left(\left[x_{i}\right]\right)=\underline{x}_{i}$ is the infimum

$$
\sup \left(\left[x_{i}\right]\right)=\bar{x}_{i} \text { is the supremum }
$$

Cooperative System Models Derived From First-Principle

Figure: Graphical representation of a dynamic system.

Derivation of the ODEs

$$
\dot{x}_{i}=-\sum_{j=1}^{n} p_{i j} x_{i}+\sum_{j=1, i \neq j}^{n} p_{j i} x_{j}
$$

with $p_{i i} \in \mathbb{R}, p_{i j} \geq 0$ and $p_{j i} \geq 0, i \neq j$

Cooperative System Models Derived From First-Principle

Figure: Graphical representation of a dynamic system.

State-space representation

$$
\dot{\mathbf{x}}=\left[\begin{array}{cccc}
-\sum_{j=1}^{n} p_{1 j} & p_{21} & \cdots & p_{n 1} \\
p_{12} & -\sum_{j=1}^{n} p_{2 j} & \cdots & p_{n 2} \\
\vdots & \vdots & \ddots & \vdots \\
p_{1 n} & p_{2 n} & \cdots & -\sum_{j=1}^{n} p_{n j}
\end{array}\right] \mathbf{x},
$$

Reformulation into a quasi-linear state-space representation

$$
\dot{\mathrm{x}}=\mathbf{f}(\mathrm{x}, \mathbf{u})
$$

For linear systems the state equations are equivalent to

$$
\dot{\mathbf{x}}=\mathbf{A} \cdot \mathbf{x}+\mathbf{B} \cdot \mathbf{u}
$$

and for non-linear formulations a quasi-linear form (by factoring out selected state variables) is obtained

$$
\dot{\mathbf{x}}=\mathbf{A}(\mathbf{x}) \cdot \mathbf{x}+\mathbf{B}(\mathbf{x}) \cdot \mathbf{u}
$$

Cooperativity

Here, \mathbf{A} or $\mathbf{A}(\mathbf{x})$ is supposed to be Metzler and Hurwitz for asymptotically stable systems

Preparations for the transformation

$\mathbf{x}=\mathbf{x}_{\mathrm{s}}=\mathbf{0} \quad$ desired operating state
$\mathbf{u}=\mathbf{u}_{\mathbf{s}}=\mathbf{0} \quad$ without loss of generality for the steady-state input with the feedback controller according to

$$
\mathbf{u}=-\mathbf{K} \mathbf{x} \quad \text { or } \quad \mathbf{u}=-\mathbf{K}(\mathbf{x}) \cdot \mathbf{x}
$$

leading to

$$
\dot{\mathbf{x}}=(\mathbf{A}(\mathbf{x})-\mathbf{B}(\mathbf{x}) \cdot \mathbf{K}(\mathbf{x})) \cdot \mathbf{x}=\mathbf{A}_{\mathrm{C}}(\mathbf{x}) \cdot \mathbf{x}
$$

General transformation

$$
\mathbf{z}(t)=\mathbf{\Theta}^{-1} \mathbf{x}(t) \quad \text { with } \quad \dot{\mathbf{z}}(t)=\mathbf{N} \cdot \mathbf{z}(t)
$$

For general applications without diagonally dominant system matrices, the transformation consists of

$$
\tilde{\mathbf{z}}(t)=\tilde{\mathbf{T}}^{-1} \mathbf{x}(t)
$$

to get a diagonally dominant system matrix and

$$
\mathbf{z}(t)=\mathbf{T}^{-1} \tilde{\mathbf{z}}(t)=\mathbf{T}^{-1} \cdot \tilde{\mathbf{T}}^{-1} \mathbf{x}(t)=(\tilde{\mathbf{T}} \cdot \mathbf{T})^{-1} \mathbf{x}(t)
$$

to ensure a Metzler structure, resulting in the overall transformation matrix $\boldsymbol{\Theta}=\tilde{\mathbf{T}} \cdot \mathbf{T}$

Structure of the transformation matrix
Θ may be a time-invariant or time-varying matrix according to the following distinction

Systems With Purely Real Eigenvalues

Preliminary

$$
\mathbf{Z}_{\mathrm{a}}-\boldsymbol{\Delta} \leq \mathbf{Z}:=\mathbf{A}_{\mathrm{C}} \leq \mathbf{Z}_{\mathrm{a}}+\boldsymbol{\Delta}
$$

with Δ, which consists of the (symmetric) worst-case bounds of all entries in $[\mathbf{A}]_{\mathrm{C}}$ and $\mathbf{Z}_{\mathrm{a}}=\mathbf{Z}_{\mathrm{a}}^{T}$ as a symmetric midpoint matrix and

$$
\mathbf{R}=\mu \mathbf{E}_{n}-\mathbf{\Gamma}
$$

as Metzler matrix, which has the same eigenvalues as \mathbf{Z}_{a} with
$\mu \in \mathbb{R} \quad$ constant
$\boldsymbol{\Gamma} \in \mathbb{R}^{n \times n} \quad$ diagonal matrix
$\mathbf{E}_{n} \in \mathbb{R}^{n \times n} \quad$ matrix with all elements equal to 1 and
$\boldsymbol{\Gamma}=\rho \mathbf{I}_{n} \quad$ with $\rho>\mu$ and the identity matrix \mathbf{I} of order n

Assumption

If

$$
\operatorname{eig}(\mathbf{R})=\operatorname{eig}\left(\mathbf{Z}_{\mathrm{a}}\right)
$$

there exists an orthogonal matrix $\mathbf{S} \in \mathbb{R}^{n \times n}$ such that $\mathbf{S}^{T} \mathbf{Z S}$ or $\boldsymbol{\Theta}^{T} \mathbf{Z} \boldsymbol{\Theta}$, respectively, is Metzler provided that

$$
\mu>n\|\boldsymbol{\Delta}\|_{\max }
$$

where $\|\boldsymbol{\Delta}\| \|_{\max }$ denotes the maximum absolute value of $\boldsymbol{\Delta}$

Assumption

If

$$
\operatorname{eig}(\mathbf{R})=\operatorname{eig}\left(\mathbf{Z}_{\mathrm{a}}\right)
$$

there exists an orthogonal matrix $\mathbf{S} \in \mathbb{R}^{n \times n}$ such that $\mathbf{S}^{T} \mathbf{Z S}$ or $\boldsymbol{\Theta}^{T} \mathbf{Z} \boldsymbol{\Theta}$, respectively, is Metzler provided that

$$
\mu>n\|\boldsymbol{\Delta}\|_{\max }
$$

where $\|\boldsymbol{\Delta}\| \|_{\text {max }}$ denotes the maximum absolute value of $\boldsymbol{\Delta}$

Aim

Computationally feasible optimization problem formulated with LMI constraints to find a suitable transformation matrix \mathbf{S}

Choosing a diagonal matrix \mathbf{Z}_{a}

If the system is
(1) diagonally dominant: \mathbf{Z}_{a} represents the diagonal entries of the original system matrix
(2) not diagonally dominant: \mathbf{Z}_{a} is a diagonal matrix with the asymptotically stable, real eigenvalues of $\operatorname{mid}\left\{[\mathbf{A}]_{\mathrm{C}}\right\}$, which is determined by a new matrix

$$
\hat{\mathbf{A}}_{\mathrm{C}}=\tilde{\mathbf{T}}^{-1} \mathbf{A}_{\mathrm{C}} \tilde{\mathbf{T}}
$$

such that the element-wise defined interval midpoint matrix $\operatorname{mid}\left\{[\mathbf{A}]_{\mathrm{C}}\right\}$ is transformed into a diagonal structure (except for numerical round-off errors). If $\operatorname{mid}\left\{[\mathbf{A}]_{\mathrm{C}}\right\}$ possesses n linearly independent real-valued eigenvectors, their floating-point approximation is used to define the matrix $\tilde{\mathbf{T}}$.

Choosing Δ

$$
\delta=\max \left(\left|[\mathbf{A}]_{\mathrm{C}}-\mathbf{Z}_{\mathrm{a}}\right|\right) \quad \text { or } \quad \delta=\max \left(\left|[\hat{\mathbf{A}}]_{\mathrm{C}}-\mathbf{Z}_{\mathrm{a}}\right|\right)
$$

with $\boldsymbol{\Delta}=\delta \cdot \mathbf{E}_{n}$

Further specifications

$$
\mu^{\star}=n\|\boldsymbol{\Delta}\|_{\max }
$$

marks the lower bound for μ and

$$
\mathbf{R}=\mathbf{S}^{T} \mathbf{Z}_{\mathrm{a}} \mathbf{S} \quad \text { and } \quad \mathbf{S}^{T} \mathbf{S}=\mathbf{I}
$$

need to be satisfied

Reformulation Into an Optimization Problem

Orthogonality of S

$$
-\mathbf{R}+\mathbf{S}^{T} \mathbf{Z}_{\mathrm{a}} \mathbf{S} \succ \mathbf{0} \quad \text { and } \quad \mathbf{I}-\mathbf{S}^{T} \mathbf{S} \succ \mathbf{0}
$$

is converted by application of the Schur complement formula according to

$$
\left[\begin{array}{cc}
-\mathbf{R} & \mathbf{S}^{T} \\
\mathbf{S} & -\mathbf{Z}_{\mathrm{a}}^{-1}
\end{array}\right] \succ \mathbf{0} \quad \text { and } \quad\left[\begin{array}{cc}
\mathbf{I} & \mathbf{S}^{T} \\
\mathbf{S} & \mathbf{I}
\end{array}\right] \succ \mathbf{0}
$$

Reformulation Into an Optimization Problem

Known specifications to other variables

$$
\mathbf{R}=\bar{\mu} \mathbf{E}_{n}-\boldsymbol{\Gamma}, \quad \bar{\mu}>\mu
$$

where the LMI constraints

$$
\boldsymbol{\Gamma} \succ \mathbf{0} \quad \text { and } \quad \mathbf{R}^{T} \mathbf{Q}+\mathbf{Q R} \prec \mathbf{0}
$$

with $\mathbf{Q} \succ \mathbf{0}$ (Hurwitz stability of \mathbf{R})
Overall cost function

$$
J=\operatorname{tr}(\mathbf{\Gamma})+\operatorname{tr}\left(\mathbf{Z}_{\mathrm{a}} \mathbf{S}-\breve{\mathbf{S}} \mathbf{R}\right)-\kappa \cdot \operatorname{tr}\left(\breve{\mathbf{S}}^{T} \mathbf{S}-\mathbf{I}\right)
$$

with the problem-dependent parameter $\kappa>0$ and the solution of the last successful evaluation of the LMI-constrained optimization task $\breve{\mathbf{S}}$

Systems With Purely Conjugate-Complex Eigenvalues

Preliminaries

- Generally only time-varying transformations possible (exception are exactly known systems)
- Uncertainty is mapped into the position of the eigenvalues

Systems With Purely Conjugate-Complex Eigenvalues

Figure: Possible positions of conjugate-complex eigenvalues.

Interval hull
$\left[\sigma_{i}\right]=\left[\underline{\sigma}_{i} ; \bar{\sigma}_{i}\right]$ and $\left[\omega_{i}\right]=\left[\underline{\omega}_{i} ; \bar{\omega}_{i}\right]$

Note

The presented approach is only valid for disjoint eigenvalue domains

Transformation matrix

The number of considered eigenvalues is reduced to

$$
\tilde{n}=\frac{n}{2}
$$

for a system with n states, because of conjugate-complex pairs

$$
\tilde{\mathbf{T}}=\left[\tilde{\mathbf{T}}_{1}, \ldots, \tilde{\mathbf{T}}_{\tilde{n}}\right], \text { where } \quad \tilde{\mathbf{T}}_{j}=\left[\Re\left\{\left[\mathbf{v}_{j}\right]\right\}, \Im\left\{\left[\mathbf{v}_{j}\right]\right\}\right]
$$

with $j \in\{1, \ldots, \tilde{n}\}$

Transformed system

Results in the real-valued Jordan canonical form

$$
\tilde{\mathbf{A}}=\operatorname{blkdiag}\left(\tilde{\mathbf{A}}_{1}, \ldots, \tilde{\mathbf{A}}_{\tilde{n}}\right) \text { with } \tilde{\mathbf{A}}_{j}=\left[\begin{array}{cc}
{\left[\sigma_{j}\right]} & {\left[\omega_{j}\right]} \\
-\left[\omega_{j}\right] & {\left[\sigma_{j}\right]}
\end{array}\right] .
$$

The time-variant transformation is done by

$$
\begin{gathered}
\mathbf{z}=\mathbf{T}^{-1}(t) \cdot \tilde{\mathbf{z}} \quad \text { with } \\
\mathbf{T}^{-1}(t)=\operatorname{blk} \operatorname{diag}\left(\mathbf{T}_{1}^{-1}(t), \ldots, \mathbf{T}_{\tilde{n}}^{-1}(t)\right)=\mathbf{T}^{T}(t)
\end{gathered}
$$

and the orthogonal blocks

$$
\mathbf{T}_{j}=\left[\begin{array}{cc}
\cos \left(\left[\omega_{j}\right] t\right) & \sin \left(\left[\omega_{j}\right] t\right) \\
-\sin \left(\left[\omega_{j}\right] t\right) & \cos \left(\left[\omega_{j}\right] t\right)
\end{array}\right]
$$

for $j \in\{1, \ldots, \tilde{n}\}$

Resulting state-space representation of the system

$$
\begin{aligned}
\dot{\mathbf{z}} & =\dot{\mathbf{T}}^{T}(t) \cdot \tilde{\mathbf{z}}+\mathbf{T}^{T}(t) \cdot \dot{\tilde{\mathbf{z}}} \\
& =\left[\left[\frac{\mathrm{d} \mathbf{T}^{T}(t)}{\mathrm{d} t}+\mathbf{T}^{T}(t) \tilde{\mathbf{A}}\right] \mathbf{T}(t)\right] \mathbf{z}=\mathbf{N} \cdot \mathbf{z}
\end{aligned}
$$

Regarding the structure of \mathbf{N}
Symbolic simplifications in terms of the exact values ω_{j}^{*}

$$
\mathbf{N}=\operatorname{blkdiag}\left(\sigma_{1} \mathbf{I}, \ldots, \sigma_{\tilde{n}} \mathbf{I}\right), \quad \mathbf{I}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Resulting state-space representation of the system

$$
\begin{aligned}
\dot{\mathbf{z}} & =\dot{\mathbf{T}}^{T}(t) \cdot \tilde{\mathbf{z}}+\mathbf{T}^{T}(t) \cdot \dot{\tilde{\mathbf{z}}} \\
& =\left[\left[\frac{\mathrm{d} \mathbf{T}^{T}(t)}{\mathrm{d} t}+\mathbf{T}^{T}(t) \tilde{\mathbf{A}}\right] \mathbf{T}(t)\right] \mathbf{z}=\mathbf{N} \cdot \mathbf{z}
\end{aligned}
$$

Asymptotic stability

Since \mathbf{N} depends on the system's eigenvalues, Hurwitz stability is guaranteed for $\bar{\sigma}_{j}<0$. Extrema of the conjugate-complex eigenvalues are obtained by building the hull over their real and imaginary parts

$$
\begin{array}{ll}
{\left[\sigma_{j}\right]=\left[\min \left(\sigma_{j}\right) ;\right.} & \left.\max \left(\sigma_{j}\right)\right], \\
{\left[\omega_{j}\right]=\left[\min \left(\omega_{j}\right) ;\right.} & \left.\max \left(\omega_{j}\right)\right]
\end{array}
$$

System With Purely Real Eigenvalues

Figure: Control of an inverted pendulum on a moving carriage.

Nonlinear differential equations

$$
\begin{gathered}
m a^{2} \cdot \ddot{\alpha}-m a \cdot \cos (\alpha) \cdot \ddot{x}-m g a \cdot \sin (\alpha)=0, \\
(M+m) \cdot \ddot{x}-m a \cdot \cos (\alpha) \cdot \ddot{\alpha}+m a \cdot \sin (\alpha) \cdot \dot{\alpha}=F
\end{gathered}
$$

Quasi-linear state-space representation

Introducing an underlying velocity control with u as the desired carriage velocity

$$
\begin{aligned}
& T_{1} \cdot \ddot{x}+\dot{x}=u \\
& \dot{\mathbf{x}}=\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\frac{g \cdot \operatorname{si}(\alpha)}{a} & 0 & 0 & -\frac{\cos (\alpha)}{T_{1} a} \\
0 & 0 & 0 & -\frac{1}{T_{1}}
\end{array}\right] \mathbf{x}+\left[\begin{array}{c}
0 \\
0 \\
\frac{\cos (\alpha)}{T_{1} a} \\
\frac{1}{T_{1}}
\end{array}\right] u \\
& y=\left[\begin{array}{llll}
-a \cdot \operatorname{si}(\alpha) & 1 & 0 & 0
\end{array}\right] \mathbf{x}, \quad \operatorname{si}(\alpha)=\frac{\sin (\alpha)}{\alpha}
\end{aligned}
$$

with the state vector $\mathbf{x}=\left[\begin{array}{llll}\alpha & x & \dot{\alpha} & \dot{x}\end{array}\right]^{T}$ and the system input u

Controlled system for $[\alpha]=\left[51.4^{\circ} ; \quad 51.7^{\circ}\right]$

$$
\mathbf{A}_{\mathrm{C}}(\alpha)=
$$

$$
\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right.
$$

$$
\left[\begin{array}{cccc}
a_{31}(\alpha)-k_{1} b_{3}(\alpha) & -k_{2} b_{3}(\alpha) & -k_{3} b_{3}(\alpha) & a_{34}(\alpha)-k_{4} b_{3}(\alpha) \\
-k_{1} b_{4} & -k_{2} b_{4} & -k_{3} b_{4} & a_{44}-k_{4} b_{4}
\end{array}\right]
$$

$$
\begin{aligned}
& {[a]_{31}=[-1.25 ;-1.23] \cdot 10^{3} \quad[a]_{32}=[12.81 ; 12.91]} \\
& {[a]_{33}=[-2.55 ;-2.52] \cdot 10^{2} \quad[a]_{34}=[1.07 ; 1.09] \cdot 10^{2}} \\
& {[a]_{41}=[-4.13 ;-4.12] \cdot 10^{2} \quad[a]_{42}=[4.13 ; 4.14]} \\
& {[a]_{43}=[-81.49 ;-81.48] \quad[a]_{44}=[34.70 ; 34.71]}
\end{aligned}
$$

Transformation matrix

$$
\boldsymbol{\Theta}=\mathbf{V S}=\left[\begin{array}{rrrr}
-0.016 & -0.170 & -0.016 & 0.155 \\
0.998 & 0.694 & -0.104 & -0.462 \\
0.056 & 0.309 & 1.095 & -0.012 \\
0.283 & -0.253 & -0.504 & 0.740
\end{array}\right]
$$

Transformed system

$$
\begin{aligned}
& \mathbf{N}=\tilde{\mathbf{A}}_{\mathbf{C}} \in 1 \cdot 10^{2}\left[\begin{array}{llll}
{[a]_{11}} & {[a]_{12}} & {[a]_{13}} & {[a]_{14}} \\
{[a]_{21}} & {[a]_{22}} & {[a]_{23}} & {[a]_{24}} \\
{[a]_{31}} & {[a]_{32}} & {[a]_{33}} & {[a]_{34}} \\
{[a]_{41}} & {[a]_{42}} & {[a]_{43}} & {[a]_{44}}
\end{array}\right] \text { with } \\
& {[a]_{11}=\left[\begin{array}{ll}
-2.124 ; & -2.100
\end{array}\right]} \\
& {[a]_{21}=\left[\begin{array}{ll}
0.152 ; & 0.166
\end{array}\right]} \\
& {[a]_{31}=\left[\begin{array}{cc}
0.064 ; & 0.067
\end{array}\right]} \\
& {[a]_{41}=\left[\begin{array}{ll}
0.026 ; & 0.038
\end{array}\right]} \\
& {[a]_{42}=\left[\begin{array}{ll}
0.001 ; & 0.018
\end{array}\right]} \\
& {[a]_{13}=\left[\begin{array}{cc}
0.061 ; ~ 0.070
\end{array}\right]} \\
& {[a]_{14}=\left[\begin{array}{cc}
0.016 ; & 0.047
\end{array}\right]} \\
& {[a]_{23}=\left[\begin{array}{cc}
0.000 ; & 0.006
\end{array}\right]} \\
& {[a]_{24}=\left[\begin{array}{ll}
0.000 ; & 0.018
\end{array}\right]} \\
& {[a]_{33}=[-0.010 ;-0.008]} \\
& {[a]_{34}=\left[\begin{array}{cc}
0.000 ; & 0.004
\end{array}\right]} \\
& {[a]_{43}=\left[\begin{array}{cc}
0.000 ; & 0.005]
\end{array}\right.} \\
& {[a]_{12}=\left[\begin{array}{cc}
0.143 ; & 0.175]
\end{array}\right.} \\
& {[a]_{22}=[-0.057 ; ~-0.038]} \\
& {[a]_{32}=\left[\begin{array}{cc}
0.001 ; & 0.005
\end{array}\right]} \\
& {[a]_{44}=[-0.024 ;-0.008]}
\end{aligned}
$$

System With Purely Conjugate-Complex Eigenvalues

Figure: Mechanical model of the wind turbine with an elastic tower.

Ordinary differential equations

$$
\left[\begin{array}{l}
\dot{\mathrm{x}} \\
\ddot{\mathrm{x}}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{0} & \mathbf{I} \\
-\mathbf{M}_{\mathrm{TB}}^{-1} \mathbf{K}_{\mathrm{TB}} & -\mathbf{M}_{\mathrm{TB}}^{-1}\left(\mathbf{D}_{\mathrm{TB}}+\mathbf{h}_{\mathrm{TB}} \mathbf{k}_{\mathrm{T}}^{T}\right)
\end{array}\right]\left[\begin{array}{l}
\mathbf{x} \\
\dot{\mathrm{x}}
\end{array}\right]
$$

with uncertainties in $\mathbf{M}_{T B}, \mathbf{D}_{T B}$ and $\mathbf{K}_{T B}$ due to their dependency on $\omega_{R}, k_{d T}$ and $k_{d B}$

Parameter domains

$$
\begin{gathered}
{\left[\omega_{\mathrm{R}}\right]=\left[\begin{array}{ll}
0.7 ; & 1.4
\end{array}\right] \mathrm{s}^{-1}} \\
{\left[k_{\mathrm{dT}}\right]=\left[\begin{array}{ll}
2.5 ; & 3.5
\end{array}\right] \cdot 10^{-2} \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}} \\
{\left[k_{\mathrm{dB}}\right]=\left[\begin{array}{ll}
0.5 ; & 1.5
\end{array}\right] \cdot 10^{-2} \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}}
\end{gathered}
$$

Transformation

$$
[\mathbf{N}]=\operatorname{diag}\left(\left[\sigma_{1}\right],\left[\sigma_{1}\right],\left[\sigma_{3}\right],\left[\sigma_{3}\right]\right)
$$

with

$$
\begin{gathered}
{\left[\sigma_{1}\right]=[-0.105 ;-0.016]} \\
{\left[\omega_{1}\right]=[3.893 ; 5.310]} \\
{\left[\sigma_{3}\right]=[-0.068 ;-0.040]} \\
{\left[\omega_{3}\right]=[1.875 ; 1.908]}
\end{gathered}
$$

Transformation of the initial conditions

$$
\tilde{\mathbf{T}}=\left[v_{1}^{\Re}, \quad v_{1}^{\Im}, \quad v_{3}^{\Re}, \quad v_{3}^{\Im}\right]
$$

$$
[\mathbf{x}](0)=\left[\begin{array}{c}
{[1.25 ;} \\
{[0.25 ;} \\
0.5] \\
{[0]} \\
{[0]}
\end{array}\right] \quad \xrightarrow{\tilde{\mathbf{T}}} \quad[\mathbf{z}](0)=\left[\begin{array}{cc}
{[-0.761 ;} & 0.335] \\
{[-9.792 ;} & 1.608] \\
{[-0.297 ;} & 0.619] \\
{[2.609 ;} & 5.474]
\end{array}\right]
$$

System with real and complex eigenvalues

Figure: Mechanical model of the stacker crane.

Ordinary differential equations

$$
\mathbf{M} \ddot{\mathbf{q}}+\mathbf{D} \dot{\mathbf{q}}+\mathbf{K q}=\mathbf{h} \cdot\left[F_{S M}-F_{S R}\left(\dot{y}_{S}\right)\right]
$$

with uncertainties in \mathbf{M} and \mathbf{K} due to their dependency on κ, a dimensionless Parameter to consider the varying vertical position of the payload x_{K}

$$
\kappa=\frac{x_{K}}{l}
$$

Parameter domains

$$
[\kappa]=\left[\begin{array}{cc}
0.45 ; & 0.54] \mathrm{m}
\end{array}\right.
$$

Transformation

$$
[\mathbf{N}]=\operatorname{diag}\left(\left[\sigma_{1}\right],\left[\sigma_{2}\right],\left[\sigma_{2}\right],\left[\sigma_{4}\right],\left[\sigma_{5}\right],\left[\sigma_{5}\right]\right)
$$

with

$$
\begin{gathered}
{\left[\sigma_{1}\right]=[-601.4 ;-560.1]} \\
{\left[\sigma_{2}\right]=[-27.4 ;-25.7]} \\
{\left[\omega_{2}\right]=[125.9 ; 127.5]} \\
{\left[\sigma_{4}\right]=[-7.5 ;-6.8]} \\
{\left[\sigma_{5}\right]=[-20.2 ;-17.5]} \\
{\left[\omega_{5}\right]=[19.8 ; 22.5]}
\end{gathered}
$$

Conclusions

- Using advantages of cooperative systems
avoiding the wrapping effect
simulating lower and upper bounds individually
reflecting the characteristics of exactly known systems
- purely real eigenvalues: LMI approach to satisfy given requirements
- complex eigenvalues: symbolically proven solution

Conclusions

- Using advantages of cooperative systems avoiding the wrapping effect simulating lower and upper bounds individually reflecting the characteristics of exactly known systems
- purely real eigenvalues: LMI approach to satisfy given requirements
- complex eigenvalues: symbolically proven solution

Outlook

- Optimization of the line-search procedure for the parameter μ
- Performance improvement for higher-dimensional applications
- Extensions to systems with real and conjugate-complex eigenvalues as well as multiple eigenvalues in a joint approach combining both presented procedures

Thank you for your attention！

