

Multi-robots pose domain characterization using interval methods

Ide Flore Kenmogne, Vincent Drevelle, Eric Marchand

SWIM 2018 : 25th – 27th July, Rostock

 d_k

Problem statement

- Uncertain measurements
 - Accurate altitude
 - Accurate roll & pitch
 - Rough heading

- 2D-3D corresponding points camera measurements
- Inter-distance measurements $d_{k,j}$
- Distance to a given base station
- Robots communicate with each other
 - Exchange measurements
- Determine the poses $\ k \in \{1,2\}$ $\mathbf{r}_k = (x_k,y_k,z_k,\phi_k, heta_k,\psi_k)$

Outline

Multi-robot cooperative localization

- Bounded-error measurements
- Constraints network
- Solving strategy
- Simulation & experimental results

Conclusion and outlook

Bounded-error measurements

• 2D-3D corresponding points measurements $ar{\mathbf{x}}_{i,k} \in [ar{\mathbf{x}}_{i,k}]$ ${}^w\mathbf{X}_i \in [{}^w\mathbf{X}_i]$

Inter-distance measurements

 $d_{k,j} \in [d_{k,j}] \quad j \in \mathcal{N}(k)$

ullet Distance to the base station $\ \ d_k \! \in \! [d_k \,]$

Proprioceptive data $[\phi^{ ext{meas.}} \pm \epsilon_{\phi}]$ $[\theta^{ ext{meas.}} \pm \epsilon_{ heta}]$ $[z^{ ext{meas.}} \pm \epsilon_{z}]$

CITS INSA UNIVERSITÉ DE EN

Set inversion with contractors

- Set inversion
 - Given $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m$

$$\mathbb{X} = \{\mathbf{x} \in \mathbb{R}^n | \mathbf{f}(\mathbf{x}) \in \mathbb{Y}\} = \mathbf{f}^{-1}(\mathbb{Y})$$

- Inclusion function $\forall [\mathbf{x}] \in \mathbb{IR}^n, \mathbf{f}([\mathbf{x}]) \subset [\mathbf{f}]([\mathbf{x}])$
- SIVIA : branch and bound algorithm
 - If $[\mathbf{f}]$ is convergent SIVIA output $\mathbb{X}^- \, \subset \, \mathbb{X} \, \subset \, \mathbb{X}^+$

Contractors

- $\forall [\mathbf{x}] \in \mathbb{IR}^n, C([\mathbf{x}]) \subseteq [\mathbf{x}]$ contraction
- $(\mathbf{x} \in [\mathbf{x}], C(\mathbf{x}) = \mathbf{x}) \Rightarrow \mathbf{x} \in C([\mathbf{x}])$ consistency

• $C(\mathbf{x}) = \emptyset \Leftrightarrow (\exists \varepsilon > 0, \forall [\mathbf{x}] \subseteq B(\mathbf{x}, \varepsilon), C([\mathbf{x}]) = \emptyset)$ continuity

• Result :

CITS INSA UNIVERSITÉ DE

Outer approximation for set of all poses compatible with measurements \rightarrow SIVIA+Contractors

Constraints network

Camera constraints

$$C_i: \begin{cases} (^{c}X_i, ^{c}Y_i, ^{c}Z_i) = {^{c}\mathbf{T}_r} {^{r}\mathbf{T}_w}(\mathbf{r}) {^{w}}\mathbf{X}_i \\ {^{c}x_i} = \frac{{^{c}X_i}}{{^{c}Z_i}}, {^{c}y_i} = \frac{{^{c}Y_i}}{{^{c}Z_i}}, \\ {^{c}x_i} \in [^{c}x_i], {^{c}y_i} \in [^{c}y_i], {^{c}Z_i} > 0 \end{cases}$$

Inter-distances constraints

$$d_{k,j} = \left\|\mathbf{p}_k - \mathbf{p}_j\right\|_2$$

Base distance constraints

CINIS SA

$$d_k = \|\mathbf{p}_k - \mathbf{b}\|_2$$

SIRISA

Constraints satisfaction problems

Initial pose estimation

- Altitude & IMU angles set in initial domain $[\mathbf{r}]$
- Image measurement using CSP

$$\mathcal{H}_{img}: \begin{pmatrix} \mathbf{r} \in [\mathbf{r}], \\ \{C_i, i \in 1...m\} \end{pmatrix} \longrightarrow \mathbb{S}^+_{\mathbf{r}_k} \text{ Outer subpaving for robot } R_k$$

• **Refine pose** using CSP for distance / inter-distances constraints

$$\mathcal{H}_{k}: \begin{pmatrix} \mathbf{p}_{k} \in \operatorname{proj}_{\mathbf{p}}(\mathbb{S}_{\mathbf{r}_{k}}^{+}), \\ \mathbf{p}_{j} \in [\mathbf{p}_{j}], \ j \in \mathcal{N}(k) \\ d_{k,j} \in [d_{k,j}], \ j \in \mathcal{N}(k) \\ d_{k,j} = \|\mathbf{p}_{k} - \mathbf{p}_{j}\|_{2}, \ j \in \mathcal{N}(k) \end{pmatrix}$$

Computation strategy for each robot

Results for two robots

Simulation & experimental results

Cooperative localisation with two drones

We now consider 2 robots **R1** and **R2**. The robots exchange their measurements. An additional measurement is given by the inter-distance d_{1,2}

Results for two robots

Simulation results & Comparison with LM

CINITS

Mean horizontal error full visibility

Mean horizontal error reduced visibility

Experimental results : subpaving in full visibility case

Experimental results : subpaving in full visibility case

Experimental results : One robot result in the case of 4 robots

SIRISA

Horizontal position domain width (m)

Average horizontal position error width (m)

Conclusion and outlook

- CoB is a good point estimate
- CoB is good initial guess for LM and EKF
- More precise positioning with growing number of robots
- Localization possible in case of complete reduced visibility for some robots due to position exchanges

Thanks for listening !

Question ?

