

<u>Mirko Franke</u>, Jan Winkler Faculty of Electrical and Computer Engineering, Institute of Control Theory

AdolC4Matlab – An Interface between MATLAB and ADOL-C for Applications in Nonlinear Control

Rostock, July 25, 2018

Motivation

Applications in Nonlinear Control

• exact input-output linearization:

 $h(\boldsymbol{x}), L_{\boldsymbol{f}}h(\boldsymbol{x}), \dots, L_{\boldsymbol{f}}^{r}h(\boldsymbol{x}), L_{\boldsymbol{g}}L_{\boldsymbol{f}}^{r-1}h(\boldsymbol{x})$

• nonlinear control with approximately linear tracking error:

 $g(\boldsymbol{x}), \operatorname{ad}_{-\boldsymbol{f}} \boldsymbol{g}(\boldsymbol{x}), \dots, \operatorname{ad}_{-\boldsymbol{f}}^{2n-1} \boldsymbol{g}(\boldsymbol{x})$

• High-Gain observer, extended Luenberger observer:

 $dh(\boldsymbol{x}), dL_{\boldsymbol{f}}h(\boldsymbol{x}), \dots, dL_{\boldsymbol{f}}^{n-1}h(\boldsymbol{x})$

...

Motivation Why Algorithmic Differentiation?

Symbolic Differentiation

- efficient for derivatives of low order
- exponential expression growth for high order derivatives
- time-consuming computations

Numeric Differentiation

- finite differences: cancellation and truncation errors
- not applicable for higher order derivatives

Motivation Why Algorithmic Differentiation?

Algorithmic Differentiation

- function is given as algorithm
- application of elementary differentiation rules with chain rule
- intermediate values are floating point numbers
- no truncation errors (exact w.r.t. floating point numbers)
- no limitation of the derivative order

Outline

- 1 Algorithmic Differentiation
- 2 About the Toolbox
- 3 Example
- 4 Summary and Outlook

Algorithmic Differentiation

AdolC4Matlab Institute of Control Theory // M. Franke Rostock, July 25, 2018

Slide 6 of 24

Algorithmic Differentiation Forward Mode

Example: $z = F(x, y) = (\sin(x \cdot y) + x) \cdot (\sin(x \cdot y) - y)$

F			∂F	$\frac{\partial F}{\partial F}$
			∂x	∂y
x	3.0	\dot{x}	1.0	0.0
y	4.0	\dot{y}	0.0	1.0
$v_1 = x \cdot y$	12.0	$\dot{v}_1 = \dot{x}y + \dot{y}x$	4.0	3.0
$v_2 = \sin(v_1)$	-0.5366	$\dot{v}_2 = \dot{v}_1 \cos(v_1)$	3.3754	2.5316
$v_3 = v_2 + x$	2.4634	$\dot{v}_3 = \dot{v}_2 + \dot{x}$	4.3754	2.5316
$v_4 = v_2 - y$	-4.5366	$\dot{v}_4 = \dot{v}_2 - \dot{y}$	3.3754	1.5316
$v_5 = v_3 \cdot v_4$	-11.1755	$\dot{v}_5 = \dot{v}_3 v_4 + \dot{v}_4 v_3$	-11.5345	-7.7119
$z = v_5$	-11.1755	$\dot{z} = \dot{v}_5$	-11.5345	-7.7119

AdolC4Matlab Institute of Control Theory // M. Franke Rostock, July 25, 2018

Algorithmic Differentiation Forward Mode – Implementation in C++

Replace floating point type double by a new class, e.g. ddouble:

```
class ddouble
```

ſ

```
double val; // function value
  double der; // derivative value
}
```

Overload all operations for additional derivative calculation:

```
ddouble operator * (ddouble x, ddouble y)
{
    ddouble z;
    z.val = x.val*y.val; // multiplication
    z.der = x.der*y.val+x.val*y.der; // product rule
    return z;
}
```


Algorithmic Differentiation

Forward mode: directed derivative

w = F'(x)v

for $v = e_i$ $\Rightarrow w \stackrel{_\sim}{=} i$ -th column of the Jacobian Reverse mode: weighted gradient

$$ar{m{a}}^T = ar{m{z}}^T m{F}'(m{x})$$

for $ar{m{z}}^T = m{e}_i^T$ $\Rightarrow ar{m{a}}^T \,\widehat{=}\, i$ -th row of the Jacobian

Reverse Mode

- the chain rule is applied in the reverse order that the function is computed
- applied in the backpropagation algorithm for neural networks

Algorithmic Differentiation Reverse Mode

$$z = F(x, y)$$

= $(\sin(xy) + x)(\sin(xy) - y)$

$$\bar{v}_i = \bar{v}_i + \frac{\partial v_j}{\partial v_i}, \quad j > i$$

$$\Rightarrow \text{ whole gradient in one pass}$$

$$\bar{x} = \frac{\partial F(x, y)}{\partial x}, \quad \bar{y} = \frac{\partial F(x, y)}{\partial y}$$

$$= 3.0$$

= 4.0
$$v_1 = x \cdot y = 12.0$$
$$v_2 = \sin(v_1) = -0.5366$$
$$v_3 = v_2 + x = 2.4634$$
$$v_4 = v_2 - y = -4.5366$$
$$v_5 = v_3 \cdot v_4 = -11.1755$$
$$\bar{v}_5 = \bar{x} = 1.0$$
$$\bar{v}_3 = \bar{v}_5 \cdot v_4 = -4.5366$$
$$\bar{v}_4 = \bar{v}_5 \cdot v_3 = 2.4634$$
$$\bar{v}_2 = \bar{v}_4 = 2.4634$$
$$\bar{v}_2 = \bar{v}_2 + \bar{v}_3 = -2.0732$$
$$\bar{x} = \bar{v}_3 = -4.5366$$
$$\bar{v}_1 = \bar{v}_2 \cdot \cos(v_1) = -1.7495$$
$$\bar{x} = \bar{x} + \bar{v}_1 \cdot y = -11.5346$$
$$\bar{y} = \bar{y} + \bar{v}_1 \cdot x = -7.7119$$

 $\frac{x}{y}$

AdolC4Matlab Institute of Control Theory // M. Franke Rostock, July 25, 2018

Algorithmic Differentiation Combination of Forward and Reverse Mode

Smooth map $F: \mathcal{M} \subset \mathbb{R}^n \to \mathbb{R}^m$ and truncated Taylor series

$$\begin{aligned} \boldsymbol{x}(t) &= \boldsymbol{x}_0 + \boldsymbol{x}_1 t + \mathcal{O}(t^2), \quad \boldsymbol{x}_k = \frac{1}{k!} \boldsymbol{x}^{(k)}(0) \in \mathbb{R}^n \\ \boldsymbol{z}(t) &= \boldsymbol{F}(\boldsymbol{x}(t)) &= \boldsymbol{z}_0 + \boldsymbol{z}_1 t + \mathcal{O}(t^2), \quad \boldsymbol{z}_k = \frac{1}{k!} \boldsymbol{z}^{(k)}(0) \in \mathbb{R}^m \end{aligned}$$

Forward mode: Taylor coefficients

Reverse mode: Adjoints

$$\mathbf{a}_0^T = \, ar{oldsymbol{z}}^T rac{\partial oldsymbol{z}_0}{\partial oldsymbol{x}_0} = \, ar{oldsymbol{z}}^T oldsymbol{F}'(oldsymbol{x}_0)$$

$$\mathbf{a}_1^T = ~ar{oldsymbol{z}}^T rac{\partial oldsymbol{z}_1}{\partial oldsymbol{x}_0} = ~ar{oldsymbol{z}}^Toldsymbol{F}''(oldsymbol{x}_0)\,oldsymbol{x}_1$$

AdolC4Matlab Institute of Control Theory // M. Franke Rostock, July 25, 2018

Slide 11 of 24

Algorithmic Differentiation ADOL-C

ADOL-C: Automatic Differentiation by OverLoading in C++

- first and higher derivatives of vector functions
- based on operator overloading uses tapes
- drivers for:
 - forward and reverse calls
 - ordinary differential equations
 - sparse Jacobians and Hessians
 - Lie-derivatives
 - ...
- routines may be called from any programing language that can be linked with C

About the Toolbox

AdolC4Matlab Institute of Control Theory // M. Franke Rostock, July 25, 2018

Slide 13 of 24

About the Toolbox Distinction from other Tools

Available MATLAB Tools

ADIMAT, ADMAT, TOMLAB/MAD, ...

- mostly only first and second oder derivatives
- target group: optimization, optimal control

ADOL-C4MATLAB

- uses the package ADOL-C
- designed for applications in nonlinear control

About the Toolbox Functionality

ADOL-C Wrappers

- madForward, madReverse
- madFunction
- madGradient, madJacobian, madHessian
- madLieScalar, madLieGradient, madLieBracket, ...

Control Engineering related Functions

- madHighGainObs, madExtLuenObs
- madFeedbackLin, madCompTorqueControl, ...

About the Toolbox Workflow

C++ Code

y[0] = x[0]*sin(x[0]*x[1]) + x[0]*x[1];

wodification and compilation

MEX-Function

generates the ADOL-C tape

evaluation

Tape with unique ID

trace of operations/evaluations

MATLAB-Drivers

- ADOL-C wrappers: forward, reverse, jacobian, hessian, ...
- control engineering related: High-Gain observer, extended Luenberger observer, feedback control, computed torque, ...
- extendable by user defined functions

usage

About the Toolbox Using the Toolbox

- code snippet is given as file (no headers, ...)
- load the settings:

S = madSettings();

• generation of the corresponding MEX function:

- TapeId = madTapeCreate(n, m, keep, filename, S);
 - $\tt n, \tt m \ldots$ number of independent and dependent variables
 - keep ... prepare for an immediate call of the reverse mode

• use the toolbox drivers, e.g.:

- F = madFunction(TapeId, X);
- J = madJacobian(TapeId, X);
 - X ... point of evaluation
- close the tape:
 - madTapeClose(TapeId);
- reopen the tape:
 - TapeId = madTapeOpen(filename);

About the Toolbox

Use Cases

- derivatives are only required numerically
- highly nonlinear functions/systems
- calculation of first and higher order derivatives
- calculation of Lie derivatives
- algorithms in nonlinear control (controller, observer)

AdolC4Matlab Institute of Control Theory // M. Franke Rostock, July 25, 2018

Slide 19 of 24

Consider the iterative function $z = f_k(x) = f(g_k(x))$ of order k:

$$g_0(x) = x$$

$$g_i(x) = \sin\left(g_{i-1}(x) + 0.1g_{i-1}^3(x)\right), \quad i = 1 \dots k$$

$$f_k(x) = g_k^4(x) \cdot \log(g_k^2(x)) \cdot \exp\left(g_k^3(x) - \tanh\left(g_k(x)\right)\right) \quad \Rightarrow \quad 9 + 5k \text{ operations}$$

Runtime comparison – algorithmic vs. symbolic computation:

- MATLAB functions: generation, evaluation
- algorithmic: tape generation, derivative computation using the tape

Tape/Function generation

AdolC4Matlab Institute of Control Theory // M. Franke Rostock, July 25, 2018

Slide 21 of 24

AdolC4Matlab Institute of Control Theory // M. Franke Rostock, July 25, 2018

Slide 22 of 24

Summary and Outlook

AdolC4Matlab Institute of Control Theory // M. Franke Rostock, July 25, 2018

Slide 23 of 24

Summary and Outlook

Conclusion

- alternative to symbolic computation of derivatives
- toolbox for MATLAB and Octave
- available on GitLab: https://gitlab.com/mfranke/ADOL-C4MATLAB

There's still work to do!

- code optimization
- extension for other applications

