
RST

Mirko Franke, Jan Winkler

Faculty of Electrical and Computer Engineering, Institute of Control TheoryAdolC4Matlab – An Interface betweenMATLAB and ADOL-C for Applications inNonlinear Control
Rostock, July 25, 2018



Motivation
Applications in Nonlinear Control
• exact input-output linearization:

h(x), Lfh(x), . . . , Lr
fh(x), LgL

r−1
f h(x)

• nonlinear control with approximately linear tracking error:

g(x), ad−fg(x), . . . , ad2n−1
−f g(x)

• High-Gain observer, extended Luenberger observer:

dh(x),dLfh(x), . . . ,dLn−1
f h(x)

• ...

AdolC4Matlab

Institute of Control Theory // M. Franke

Rostock, July 25, 2018

Slide 2 of 24 RST



Motivation
Why Algorithmic Differentiation?

Symbolic Differentiation
• efficient for derivatives of low order
• exponential expression growth for high order derivatives
• time-consuming computations

Numeric Differentiation
• finite differences: cancellation and truncation errors

• not applicable for higher order derivatives

AdolC4Matlab

Institute of Control Theory // M. Franke

Rostock, July 25, 2018

Slide 3 of 24 RST



Motivation
Why Algorithmic Differentiation?

Algorithmic Differentiation
• function is given as algorithm
• application of elementary differentiation rules with chain rule
• intermediate values are floating point numbers
• no truncation errors (exact w.r.t. floating point numbers)
• no limitation of the derivative order

AdolC4Matlab

Institute of Control Theory // M. Franke

Rostock, July 25, 2018

Slide 4 of 24 RST



Outline
1 Algorithmic Differentiation

2 About the Toolbox

3 Example

4 Summary and Outlook

AdolC4Matlab

Institute of Control Theory // M. Franke

Rostock, July 25, 2018

Slide 5 of 24 RST



Algorithmic Differentiation

AdolC4Matlab

Institute of Control Theory // M. Franke

Rostock, July 25, 2018

Slide 6 of 24 RST



Algorithmic Differentiation
Forward Mode
Example: z = F (x, y) =

(
sin(x · y) + x

)
·
(

sin(x · y)− y
)

F
∂F

∂x

∂F

∂y

x 3.0 ẋ 1.0 0.0

y 4.0 ẏ 0.0 1.0

v1 = x · y 12.0 v̇1 = ẋy + ẏx 4.0 3.0

v2 = sin(v1) −0.5366 v̇2 = v̇1 cos(v1) 3.3754 2.5316

v3 = v2 + x 2.4634 v̇3 = v̇2 + ẋ 4.3754 2.5316

v4 = v2 − y −4.5366 v̇4 = v̇2 − ẏ 3.3754 1.5316

v5 = v3 · v4 −11.1755 v̇5 = v̇3v4 + v̇4v3 −11.5345 −7.7119
z5 = v5 −11.1755 ż5 = v̇5 −11.5345 −7.7119

AdolC4Matlab

Institute of Control Theory // M. Franke

Rostock, July 25, 2018

Slide 7 of 24 RST



Algorithmic Differentiation
Forward Mode – Implementation in C++

Replace floating point type double by a new class, e.g. ddouble:

class ddouble
{

double val; // function value
double der; // derivative value

}

Overload all operations for additional derivative calculation:

ddouble operator * (ddouble x, ddouble y)
{

ddouble z;
z.val = x.val*y.val; // multiplication
z.der = x.der*y.val+x.val*y.der; // product rule
return z;

}

AdolC4Matlab

Institute of Control Theory // M. Franke

Rostock, July 25, 2018

Slide 8 of 24 RST



Algorithmic Differentiation
Forward mode: directed derivative

w = F ′(x)v

for v = ei
⇒ w =̂ i-th column of the Jacobian

Reverse mode: weighted gradient

āT = z̄TF ′(x)

for z̄T = eTi
⇒ āT =̂ i-th row of the Jacobian

Reverse Mode
• the chain rule is applied in the reverse order that the function is computed
• applied in the backpropagation algorithm for neural networks

AdolC4Matlab

Institute of Control Theory // M. Franke

Rostock, July 25, 2018

Slide 9 of 24 RST



Algorithmic Differentiation
Reverse Mode

z = F (x, y)

=
(

sin(xy) + x
)(

sin(xy)− y
)

v̄i = v̄i +
∂vj

∂vi
, j > i

⇒ whole gradient in one pass

x̄ =
∂F (x, y)

∂x
, ȳ =

∂F (x, y)

∂y

x = 3.0
y = 4.0

v1 = x · y = 12.0

v2 = sin(v1) = −0.5366

v3 = v2 + x = 2.4634

v4 = v2 − y = −4.5366

v5 = v3 · v4 = −11.1755

z = v5 = −11.1755

v̄5 = z̄ = 1.0

v̄3 = v̄5 · v4 = −4.5366

v̄4 = v̄5 · v3 = 2.4634

v̄2 = v̄4 = 2.4634

ȳ = −v̄4 = −2.4634

v̄2 = v̄2 + v̄3 = −2.0732

x̄ = v̄3 = −4.5366

v̄1 = v̄2 · cos(v1) = −1.7495

x̄ = x̄ + v̄1 · y = −11.5346

ȳ = ȳ + v̄1 · x = −7.7119

AdolC4Matlab

Institute of Control Theory // M. Franke

Rostock, July 25, 2018

Slide 10 of 24 RST



Algorithmic Differentiation
Combination of Forward and Reverse Mode

Smooth map F :M⊂ Rn → Rm and truncated Taylor series

x(t) = x0 + x1t +O(t2), xk = 1
k!x

(k)(0) ∈ Rn

z(t) = F (x(t)) = z0 + z1t +O(t2), zk = 1
k!z

(k)(0) ∈ Rm

Forward mode: Taylor coefficients

z0 = F (x0)

z1 = F ′(x0)x1

Reverse mode: Adjoints

aT0 = z̄T ∂z0

∂x0
= z̄TF ′(x0)

aT1 = z̄T ∂z1

∂x0
= z̄TF ′′(x0)x1

AdolC4Matlab

Institute of Control Theory // M. Franke

Rostock, July 25, 2018

Slide 11 of 24 RST



Algorithmic Differentiation
ADOL-C

ADOL-C: Automatic Differentiation by OverLoading in C++
• first and higher derivatives of vector functions

• based on operator overloading — uses tapes
• drivers for:

– forward and reverse calls

– ordinary differential equations

– sparse Jacobians and Hessians

– Lie-derivatives

– ...

• routines may be called from any programing language that can be linked with C

AdolC4Matlab

Institute of Control Theory // M. Franke

Rostock, July 25, 2018

Slide 12 of 24 RST



About the Toolbox

AdolC4Matlab

Institute of Control Theory // M. Franke

Rostock, July 25, 2018

Slide 13 of 24 RST



About the Toolbox
Distinction from other Tools

Available MATLAB Tools
ADiMAT, ADMAT, TOMLAB/MAD, ...

• mostly only first and second oder derivatives
• target group: optimization, optimal control

ADOL-C4MATLAB
• uses the package ADOL-C
• designed for applications in nonlinear control

AdolC4Matlab

Institute of Control Theory // M. Franke

Rostock, July 25, 2018

Slide 14 of 24 RST



About the Toolbox
Functionality

ADOL-C Wrappers
• madForward, madReverse

• madFunction

• madGradient, madJacobian, madHessian

• madLieScalar, madLieGradient, madLieBracket, ...

Control Engineering related Functions
• madHighGainObs, madExtLuenObs

• madFeedbackLin, madCompTorqueControl, ...

AdolC4Matlab

Institute of Control Theory // M. Franke

Rostock, July 25, 2018

Slide 15 of 24 RST



About the Toolbox
Workflow

C++ Code
y[0] = x[0]*sin(x[0]*x[1]) + x[0]*x[1];

MATLAB-Drivers
• ADOL-C wrappers:
forward, reverse, jacobian, hessian,
...

• control engineering related:
High-Gain observer, extended
Luenberger observer, feedback
control, computed torque, ...

• extendable by user defined
functions

MEX-Function
generates the ADOL-C tape

Tape with unique ID
trace of operations/evaluations

modification and compilation

evaluation

u
s
a
g
e

AdolC4Matlab

Institute of Control Theory // M. Franke

Rostock, July 25, 2018

Slide 16 of 24 RST



About the Toolbox
Using the Toolbox

• code snippet is given as file (no headers, ...)
• load the settings:

S = madSettings();
• generation of the corresponding MEX function:

TapeId = madTapeCreate(n, m, keep, filename, S);
n, m ... number of independent and dependent variables
keep ... prepare for an immediate call of the reverse mode

• use the toolbox drivers, e.g.:
F = madFunction(TapeId, X);
J = madJacobian(TapeId, X);

X ... point of evaluation
• close the tape:

madTapeClose(TapeId);
• reopen the tape:

TapeId = madTapeOpen(filename);

AdolC4Matlab

Institute of Control Theory // M. Franke

Rostock, July 25, 2018

Slide 17 of 24 RST



About the Toolbox

Use Cases
• derivatives are only required numerically
• highly nonlinear functions/systems
• calculation of first and higher order derivatives
• calculation of Lie derivatives
• algorithms in nonlinear control (controller, observer)

AdolC4Matlab

Institute of Control Theory // M. Franke

Rostock, July 25, 2018

Slide 18 of 24 RST



Example

AdolC4Matlab

Institute of Control Theory // M. Franke

Rostock, July 25, 2018

Slide 19 of 24 RST



Example
Consider the iterative function z = fk(x) = f(gk(x)) of order k:

g0(x) = x

gi(x) = sin
(
gi−1(x) + 0.1g3i−1(x)

)
, i = 1 . . . k

fk(x) = g4k(x) · log(g2k(x)) · exp
(
g3k(x)− tanh

(
gk(x)

))
⇒ 9 + 5k operations

Runtime comparison – algorithmic vs. symbolic computation:

• MATLAB functions: generation, evaluation
• algorithmic: tape generation, derivative computation using the tape

AdolC4Matlab

Institute of Control Theory // M. Franke

Rostock, July 25, 2018

Slide 20 of 24 RST



Example

1e-2

1e-1

1e+0

1e+1

1e+2

1e+3

1e+4

0 2 4 6 8 10

C
o
m
p
u
ta
ti
o
n
ti
m
e
in

s

Order k of iteration

Tape/Function generation

algorithmic

symbolic – fk(x)

symbolic – f ′k(x)

symbolic – f ′′k (x)

AdolC4Matlab

Institute of Control Theory // M. Franke

Rostock, July 25, 2018

Slide 21 of 24 RST



Example

0

10

20

30

40

50

60

70

80

0 2 4 6 8 10 0 2 4 6 8 10

C
o
m
p
u
ta
ti
o
n
ti
m
e
in
µ
s

Order k of iteration

Evaluation of fk(x)

algorithmic

symbolic

Order k of iteration

Evaluation of f ′′k (x)

algorithmic

symbolic

AdolC4Matlab

Institute of Control Theory // M. Franke

Rostock, July 25, 2018

Slide 22 of 24 RST



Summary and Outlook

AdolC4Matlab

Institute of Control Theory // M. Franke

Rostock, July 25, 2018

Slide 23 of 24 RST



Summary and Outlook
Conclusion
• alternative to symbolic computation of derivatives
• toolbox for MATLAB and Octave
• available on GitLab: https://gitlab.com/mfranke/ADOL-C4MATLAB

There’s still work to do!
• code optimization
• extension for other applications

AdolC4Matlab

Institute of Control Theory // M. Franke

Rostock, July 25, 2018

Slide 24 of 24 RST

https://gitlab.com/mfranke/ADOL-C4MATLAB

	Motivation
	Outline
	 Algorithmic Differentiation
	 About the Toolbox
	Example
	Summary and Outlook

