

Institut für Erdmessung

Guaranteed Bounding Zones for GNSS Positioning by Geometrical Constraints

11th Summer Workshop on Interval Methods (SWIM 2018)

DFG Research Training Group (GRK2159) i.c.sens – Integrity and Collaboration in dynamic sensor networks Leibniz Universität Hannover – Institut für Erdmessung

M.Sc. Hani Dbouk <u>dbouk@ife.uni-hannover.de</u> Prof. Dr.-Ing. Steffen Schön <u>schoen@ife.uni-hannover.de</u>

Motivation

 Geometrical constrains provide rigorous and reliable computing

SWIM 2018

- Smallest guaranteed bounding zones
- Fault detection and exclusion
- > Minimum detectable bias
- Inconsistency measures

Least Squares Adjustment

•
$$\rho = \sqrt{(x_{sv} - x_u)^2 + (y_{sv} - y_u)^2 + (z_{sv} - z_u)^2} + \delta t + w = f(x)$$

$$d\rho = OMC = f(x_0) - \rho = \hat{\rho} - \rho$$
$$d\hat{x} = (A^T P A)^{-1} A^T P \cdot d\rho$$

• where
$$A = \left[\frac{\partial f}{\partial x}|_{x_0}\right]$$

• $\widehat{x} = x_0 + d\widehat{x}$

Hani Dbouk, Steffen Schön RTG-i.c.sens

Primal-Dual Polytope

- Hyperplane is a set of the form $\{x \mid ax = b\}$
- $H Polytope = \{ x \mid a_i x \le b_i, i = 1, ..., n, c_i x = d_i, i = 1, ..., p \}$

•
$$V - Polytope = conv(\mathbf{X}) = \{\sum_{i=1}^{n} \lambda_i \mathbf{x}_i | \lambda_i \ge 0, \sum_{i=1}^{n} \lambda_i = 1\}$$

Primal-Dual Polytope

Derivation of Observation Interval Error Bounds

- Three different ways to set the error bounds
 - > Probabilistic approach with prior integrity risk
 - Sensitivity analysis of the measurement correction
 - Expert knowledge
- Error bounds and navigation geometry define the volume and the shape of the bounding zone i.e. the polytope

Impact of Geometry

Ife Hani Dbo RTG-i.c.

Hani Dbouk, Steffen Schön RTG-i.c.sens

SWIM 2018

7 10

Leibniz Universität

Hannover

Impact of Random Noise

SWIM 2018

RTG-i.c.sens

Real Data: Error Indicating Polytope

Point Positioning Error Analysis

Point Positioning Error Analysis

Impact of Biased Measurement

SWIM 2018

Hani Dbouk, Steffen Schön RTG-i.c.sens

12 10

Leibniz

Universität

Hannover

Impact of Biased Measurements

SWIM 2018

Hannover

Minimum Detectable Bias

$$MDB_{Z_i} = w_{hl_z} + \Delta_i$$

$$MDB_{\mathcal{P}_i} = w_{hl_{\mathcal{P}}} + \Delta_i$$

Hani Dbouk, Steffen Schön RTG-i.c.sens

SWIM 2018

$$MDB_{TS,i} = \sqrt{\frac{\lambda_0}{c_i^T Q_y^{-1} (I_m - P_A) c_i}}$$

14

Leibniz Universität

Hannover

10

Minimum Detectable Bias

SWIM 2018

15

Leibniz Universität 10 Hannover 100

Minimum Detectable Bias

Inconsistency measures

Inconsistency measures

SWIM 2018

Hani Dbouk, Steffen Schön

18

Leibniz Universität 10 Hannover 100

Inconsistency measures

Conclusions

- PDP shows higher precision and accuracy than LSA
- PDP is more sensitive to the positioning geometry than LSA
- New methods to derive MDB with better performance than traditional hypothesis test statistics

- Shape and volume of the polytope are strictly related to the geometry and noise distribution
- PDP gives empty sets in the presence of detectable bias
- PDP provides a inconsistency check bounding zone

