
GUARANTEED SLAM –
PRACTICAL CONSIDERATIONS

Eduard Codres, Mohamed Mustafa, Mario Martinez

Guerrero, and Alexandru Stancu

School Of Electrical And Electronic Engineering

University of Manchester

SWIM 2018



SLAM - Simultaneous Localisation And Mapping

 SLAM is used in mobile robots for building reliable maps of unknown 
environments.

 Building a reliable map of the environment is a critical task firstly because the 
mobile robot needs to have safe navigation in unknown environments and 
secondly because in many cases an accurate map is needed for future use when 
the environment is dangerous or not accessible to humans.

 A mobile robot can build a map of its environment using any of the available 
exteroceptive sensors such as sonars, digital cameras, structured light sensors, 
LiDARs etc.

Intel Realsense D435 Velodyne 3D LiDAR High speed digital camera



SLAM - Simultaneous Localisation And Mapping

 Since the measurements from the exteroceptive sensors are relative to 
the robot, building the map requires a transformation from the robot 
frame to the fixed world frame. This transformation is only possible if the 
robot position is available, which can be found using localisation 
techniques.

 The easiest localisation can be implemented using proprioceptive sensors 
such as rotary encoders or inertial measurement units (IMU), but these 
types of sensors are usually noisy and can lead to uncertainty rapidly 
accumulating in the robot pose.

 Because mapping problem is always solved in conjunction with the 
localisation problem and vice-versa, this approach is called Simultaneous 
Localisation And Mapping (SLAM).



SLAM - Simultaneous Localisation And Mapping



Types of SLAM

 Various SLAM approaches exist, but most of them can be summarised, depending 
on the way they deal with uncertainty, into two categories: 
• probabilistic SLAM;

• interval SLAM.

 Most notable probabilistic approaches are based on Kalman filter, extended 
Kalman filter or a combination of particle filter and extended Kalman filter 
(FastSLAM).

 Interval SLAM tries to solve the drawbacks of the probabilistic methods (they 
need a Gaussian noise distribution and model linearisation) in a guaranteed way.

 One of the biggest drawbacks when using interval methods is that, in many cases, 
they can be pessimistic.



SLAM with feature detection

 One issue with the existing guaranteed SLAM approaches is that 
they rely on existing methods or algorithms to detect features in 
the raw data provided by the sensors.

 The image detected features can be: point features, corners, edges 
etc.

 Geometric features can also be extracted from point cloud data: 
line features, planar features, cylinders etc.

Feature 
detector

Sensor raw data

Noise characterisation 
provided by the manufacturer

Output feature

Noise characterisation 
unknown



Problem formulation

 Because interval methods can be pessimistic it is better to use all 
available sensor data. 

Example of a dense point cloud generated by a structured light sensor.



Problem formulation

 To address the drawbacks presented before, a SLAM method which 
takes into account all sensor measurements and generates a CSP 
(Constraint Satisfaction Problem) is proposed. 

 A non-holonomic robot with a 2D Lidar sensor is used as an 
example.

 In this approach two main problems have to be addressed:
• The data association problem has to be solved for each sensor 

measurement in order to be able to contact the CSP;

• Computation time has to be small enough such that the CSP is 
contracted in real time. The LiDAR sensor (Hokuyo URG-04lx) 
generates up to 680 measurements with a frequency of 10 Hz.



Interval SLAM – general aspects

 Generally, the SLAM problem is described by the robot motion 
model coupled with the sensor model.

 The robot motion model is:
𝐬𝑘 = 𝒉 𝐬𝑘−1, 𝐮𝑘 + 𝐪𝑘

, where 𝐬𝑘 is the robot pose at step k, 𝒉 𝐬𝑘−1, 𝐮𝑘 is a nonlinear 
function and 𝐪𝑘 is additive noise associated with the motion.

 The sensor model is given by:
𝐳𝑖,𝑘 = 𝒈 𝐦i, 𝐬𝑘 + 𝐫𝑘

, where 𝐳𝑖,𝑘 is the measurement of landmark i at step k, 𝒈 𝐦i, 𝐬𝑘 is a 
nonlinear function and 𝐫𝑘 is additive sensor noise.



Interval SLAM – general aspects

 The following set of variables is used to solve SLAM as a CSP:

𝐱 = 𝐬0
T, ⋯ , 𝐬𝑛𝑓

T ,𝐦1
T, ⋯ ,𝐦𝑛𝑙

T

, where 𝑛𝑓 is the number of time steps and 𝑛𝑙 is the number of landmarks.

 The SLAM constraint satisfaction problem is defined by the following set 
of constraints:

𝐬𝑘 − 𝒉 𝐬𝑘−1, 𝐮𝑘 ∈ 𝐪
𝐳𝑖,𝑘 − 𝒈 𝐦i, 𝐬𝑘 ∈ 𝐫

, where 𝑖 ∈ 1,⋯ , 𝑛𝑙 , 𝑘 ∈ 1,⋯ , 𝑛𝑓 and 𝐪𝑘, 𝐫𝑘 are bounded such that 𝐪𝑘 ∈
𝐪 , 𝐫𝑘 ∈ 𝐫 .

 The SLAM CSP can be contracted using a forward-backward contractor.



Interval SLAM – implementation

 To solve the data association problem without using a feature detector 
the map is defined in the following manner:

ℳ: 𝒫𝐸𝑀𝑃𝑇𝑌, 𝒫𝑂𝐵𝑆𝑇𝐴𝐶𝐿𝐸

 Where:
• 𝒫𝐸𝑀𝑃𝑇𝑌 - defines the area of the map without obstacles;

• 𝒫𝑂𝐵𝑆𝑇𝐴𝐶𝐿𝐸 - defines the area of the map containing obstacles.

 Most sensors can be used to generate a map containing the two sets 
described above.



Interval SLAM – implementation

𝒫𝐸𝑀𝑃𝑇𝑌is shown in white, 𝒫𝑂𝐵𝑆𝑇𝐴𝐶𝐿𝐸 is shown in yellow



Interval SLAM – implementation

 The two sets that accumulate all measurements for the empty area and obstacles for each time step are:

𝒫𝐸𝑀𝑃𝑇𝑌
𝑘 = ራ

𝑖∈𝒵𝑛𝑒𝑤
𝑘

𝒫𝐸𝑀𝑃𝑇𝑌
𝑖,𝑘 ; 𝒫𝑂𝐵𝑆𝑇𝐴𝐶𝐿𝐸

𝑘 = ራ

𝑖∈𝒵𝑛𝑒𝑤
𝑘

𝒫𝑂𝐵𝑆𝑇𝐴𝐶𝐿𝐸
𝑖,𝑘 ; 𝒫𝑂𝐿𝐷

𝑘 = ራ

𝑖∈𝒵𝑜𝑙𝑑
𝑘

𝒫𝑂𝐵𝑆𝑇𝐴𝐶𝐿𝐸
𝑖,𝑘 ;

, where 𝒵𝑜𝑙𝑑
𝑘 and 𝒵𝑛𝑒𝑤

𝑘 are two sets that contain the old and new measurements for each step, respectively. 
𝒫𝐸𝑀𝑃𝑇𝑌
𝑖,𝑘 and 𝒫𝑂𝐵𝑆𝑇𝐴𝐶𝐿𝐸

𝑖,𝑘 are generated using the sensor model.

 The map, containing all measurements for all steps, is then updated by:

𝒫𝐸𝑀𝑃𝑇𝑌 =ራ

𝑘=1

𝑛𝑓

𝒫𝐸𝑀𝑃𝑇𝑌
𝑘 ; 𝒫𝑂𝐵𝑆𝑇𝐴𝐶𝐿𝐸 = ራ

𝑘=1

𝑛𝑓

𝒫𝑂𝐵𝑆𝑇𝐴𝐶𝐿𝐸
𝑘 ሩ ራ

𝑘=1

𝑛𝑓

𝒫𝑂𝐿𝐷
𝑘

 A measurement is considered old if it was previously included in the map. This is verified with the 
following inclusion test:

𝒫𝐸𝑀𝑃𝑇𝑌
𝑖,𝑘 ⊂ 𝒫𝐸𝑀𝑃𝑇𝑌⋃𝒫𝑂𝐵𝑆𝑇𝐴𝐶𝐿𝐸



Interval SLAM – implementation

 A non-holonomic robot equipped with a 2D LiDAR sensor is used to test the interval SLAM in 
a practical application.

 The kinematic model is implemented to generate the constraints for the robot motion
model:

൞

𝑠𝑥,𝑘 = 𝑠𝑥,𝑘−1 + 𝑣𝑘 ∙ ∆𝑡 ∙ cos 𝑠𝜃,𝑘−1 + 𝑞𝑥,𝑘

𝑠𝑦,𝑘 = 𝑠𝑦,𝑘−1 + 𝑣𝑘 ∙ ∆𝑡 ∙ sin 𝑠𝜃,𝑘−1 + 𝑞𝑦,𝑘
𝑠𝜃,𝑘 = 𝑠𝜃,𝑘−1 + 𝜔𝑘 ∙ ∆𝑡 + 𝑞𝜃,𝑘

, where 𝒔𝒌 = 𝑠𝑥,𝑘 , 𝑠𝑦,𝑘 , 𝑠𝜃,𝑘
𝑇

is the robot pose vector, 𝒖𝒌 = 𝑣𝑘 , 𝜔𝑘
𝑇 is the input vector and 

𝒒𝒌 = 𝑞𝑥,𝑘 , 𝑞𝑦,𝑘 , 𝑞𝜃,𝑘
𝑇

represents the motion noise

 The sensor model for the 2D LiDAR is shown below:

൞
𝑧𝜌,𝑖,𝑘 = 𝑚𝑥,𝑖 − 𝑠𝑥,𝑘

2
+ 𝑚𝑦,𝑖 − 𝑠𝑦,𝑘

2
+ 𝑟𝜌,𝑘

𝑧𝛼,𝑖,𝑘 = 𝑎𝑡𝑎𝑛2 𝑚𝑦,𝑖 − 𝑠𝑦,𝑘 ,𝑚𝑥,𝑖 − 𝑠𝑥,𝑘 − 𝑠𝜃,𝑘 + 𝑟𝛼,𝑘

, where 𝒛𝑖,𝒌 = 𝑧𝜌,𝑖,𝑘 , 𝑧𝛼,𝑖,𝑘
𝑻

is the measurement vector (range and bearing) in robot frame, 

𝒎𝑖 = 𝑚𝑥,𝑖 , 𝑚𝑦,𝑖
𝑇

is the landmark being measured and 𝒓𝑘 = 𝑟𝜌,𝑘 , 𝑟𝛼,𝑘
𝑇

is the measurement 
noise.



Interval SLAM – implementation

 For the empty area set the following constraints are defined:

𝒫𝐸𝑀𝑃𝑇𝑌
𝑖,𝑘 : ൞

𝑥 − 𝑠𝑥,𝑘
2
+ 𝑦 − 𝑠𝑦,𝑘

2
∈ 0, 𝑧𝜌,𝑖,𝑘 − 𝑟𝜌,𝑘

𝑎𝑡𝑎𝑛2 𝑦 − 𝑠𝑦,𝑘 , 𝑥 − 𝑠𝑥,𝑘 − 𝑠𝜃,𝑘 ∈ 𝑧𝛼,𝑖,𝑘 + 𝑟𝛼,𝑘

 For the obstacle area set the following constraints are defined:

𝒫𝑂𝐵𝑆𝑇𝐴𝐶𝐿𝐸
𝑖,𝑘 : ൞

𝑥 − 𝑠𝑥,𝑘
2
+ 𝑦 − 𝑠𝑦,𝑘

2
∈ 𝑧𝜌,𝑖,𝑘 + 𝑟𝜌,𝑘

𝑎𝑡𝑎𝑛2 𝑦 − 𝑠𝑦,𝑘 , 𝑥 − 𝑠𝑥,𝑘 − 𝑠𝜃,𝑘 ∈ 𝑧𝛼,𝑖,𝑘 + 𝑟𝛼,𝑘

, where 𝑖 ∈ 1,⋯ , 𝑛𝑚 , 𝑛𝑚 is the number of measurements at step k.

 The measurement noise is bounded by intervals such that:

𝑟𝜌,𝑘 ∈ 𝑟𝜌,𝑘 , 𝑟𝜌,𝑘
𝑟𝛼,𝑘 ∈ 𝑟𝛼,𝑘 , 𝑟𝛼,𝑘



Interval SLAM – computing optimisations

 Recall that the following inclusion test is required for each measurement:

𝒫𝐸𝑀𝑃𝑇𝑌
𝑖,𝑘 ⊂ 𝒫𝐸𝑀𝑃𝑇𝑌⋃𝒫𝑂𝐵𝑆𝑇𝐴𝐶𝐿𝐸

 In practice, this inclusion test can be computationally expensive. Because 
the sensor generates a compact and ordered set of measurements this 
can be used to reduce the number of inclusion tests.

 All measurements that are potentially near unmeasured areas are marked 
on the map. The set of these measurements is denoted by 𝒫𝑈𝑁𝐾𝑁𝑂𝑊𝑁.

 With this new information a measurement is considered old if it satisfies 
the following test, which is easier to implement:

𝒫𝑂𝐵𝑆𝑇𝐴𝐶𝐿𝐸
𝑖,𝑘 ⋂𝒫𝑈𝑁𝐾𝑁𝑂𝑊𝑁 = ∅



Interval SLAM – computing optimisations

Measurements in red are near unmeasured space and included in 𝒫𝑈𝑁𝐾𝑁𝑂𝑊𝑁



Interval SLAM – computing optimisations

 As the map ℳ increases, the number of boxes which define the 
two sets of the map becomes bigger. This, in turn, increases the 
number of computations required for 𝒫𝐸𝑀𝑃𝑇𝑌 and 𝒫𝑂𝐵𝑆𝑇𝐴𝐶𝐿𝐸.

 C++ containers can be used for data storage as they organise the 
data in a more efficient way. Some of the container classes are 
listed below:
• Multiset;

• Map;

• Unordered map.

 These containers use trees to store the data and speed up the 
search process for accessing the data.



Interval SLAM – computing optimisations

 A better approach is to store the data in a grid structure. The space 
is partitioned into cells and each box in the map is allocated to its 
corresponding cell.



Interval SLAM – results

 Comparison between an interval map and a probabilistic map. The interval map 
accumulates the uncertainty over time, as the robot moves inside the unknown 
environment.



Conclusions

 A new Interval SLAM approach using all available 
measurements is developed.

 The method is tested and showed to be computationally 
feasible for a 2D map built with a LiDAR sensor.

 Future work:
• Extend the method for 3D environments;

• Use parallel computing to allow bigger measurement data sets;


