Accurate and Reproducible Matrix Multiplication

Katsuhisa Ozaki

Department of Mathematical Sciences, Shibaura Institute of Technology

SWIM2018, University of Rostock, July 25th, 2018. Thanks to fruitful comments by S.M. Rump
Introduction

Our topic is matrix multiplication using numerical computations (floating-point arithmetic).

- Accuracy
- Performance (Speed)
- Reproducible
Introduction

Numerical results of matrix multiplication depend on

- the number of cores
- use of Fused Multiply-Add (FMA)
- block size

If the order of evaluation is changed, numerical results are also changed due to rounding errors.
Introduction

Let p be $2n$-vector.

For the case of a single core:

$(((((p_1 + p_2) + p_3) + \ldots) + p_{2n})$

For the case of two cores:

$(p_1 + \ldots + p_n) + (p_{n+1} + \ldots + p_{2n})$
Introduction

Let four floating-point numbers be x_1, y_1, x_2, y_2.

$$x_1y_1 + x_2y_2$$

If we have fused multiply-add:

$$\text{fma}(x_2, y_2, \text{fl}(x_1y_1))$$

$fma(a, b, c)$ produces an approximation of $ab + c$ with a single rounding.
Reproducibility

an ability to obtain a bit-wise identical FP result from multiple runs of the code on the same input data.

- **ReproBLAS** by Ahrens, Nguyen and Demmel
- **ExBLAS** by Iakymchuk, Collange, Defour and Graillat

We introduce reproducible algorithms for matrix multiplication.
Importance of Reproducibility

These are problems for computer-assisted proof:

- update of software
- replace by a new computer

We may not check the proof again in the future. (although a mathematical proof can be checked by books anytime in the future)
Reproducible Matrix Multiplication

- Error-Free Transformation of Matrix Multiplication
 - Obtain Accurate Result

 Our approach does not require new libraries.

 We use (already existed) BLAS or PBLAS

Assume that neither overflow nor underflow occurs and divide and conquer method is not applied.
Notation

- \mathbb{F}: set of floating-point numbers (IEEE 754)
- u: roundoff unit (ex. $u = 2^{-53}$)
- $\text{fl}(...)$: computed result
- $A \in \mathbb{F}^{m \times n}$ and $B \in \mathbb{F}^{n \times p}$
The original paper

Improvement of Division

Improvement using overflow

Example of Error-Free Transformation

We obtain \(A^{(1)}, A^{(2)} \in \mathbb{F}^{m \times n} \) and \(B^{(1)}, B^{(2)} \in \mathbb{F}^{n \times p} \) such that

\[
A = A^{(1)} + A^{(2)}, \quad B = B^{(1)} + B^{(2)}, \quad A^{(1)}B^{(1)} = \text{fl}(A^{(1)}B^{(1)})
\]

and compute

\[
AB = (A^{(1)} + A^{(2)})(B^{(1)} + B^{(2)}) = A^{(1)}B^{(1)} + A^{(1)}B^{(2)} + A^{(2)}B.
\]
Splitting

Define \(\beta \in \mathbb{F} \) and vectors \(\sigma \in \mathbb{F}^m \) and \(\tau \in \mathbb{F}^p \)

\[
\beta = \left\lceil \frac{(\log_2 \alpha - \log_2 u)}{2} \right\rceil, \quad 1 \leq \alpha \leq n
\]

\[
\sigma_i = 2^\beta \cdot 2^{v_i}, \quad \tau_j = 2^\beta \cdot 2^{w_j},
\]

(1)

Here, the vectors \(\nu \in \mathbb{F}^m \) and \(w \in \mathbb{F}^p \) are

\[
\nu_i = \left\lceil \log_2 \max_{1 \leq j \leq n} |a_{i,j}| \right\rceil, \quad w_j = \left\lceil \log_2 \max_{1 \leq i \leq n} |b_{i,j}| \right\rceil.
\]

(2)
Error-Free Splitting

\(A^{(1)} \) and \(A^{(2)} \) are obtained by

\[
a_{ij}^{(1)} = \text{fl} \left((a_{ij} + \sigma_i) - \sigma_i \right), \quad a_{ij}^{(2)} = \text{fl} \left(a_{ij} - a_{ij}^{(1)} \right)
\]

Similarly, \(B^{(1)} \) and \(B^{(2)} \) can be obtained by

\[
b_{ij}^{(1)} = \text{fl} \left((b_{ij} + \tau_j) - \tau_j \right), \quad b_{ij}^{(2)} = \text{fl} \left(b_{ij} - b_{ij}^{(1)} \right)
\]
\[- \log_2 u \text{ bits} = 53 \text{ bits}\]

\[
\sigma_i \quad a_{ij} \\
\text{fl}(\sigma_i + a_{ij}) \\
\text{fl}((\sigma_i + a_{ij}) - \sigma_i) = a_{ij}^{(1)} \\
\text{fl}(a_{ij} - a_{ij}^{(1)}) = a_{ij}^{(2)} \\
\]

\[u\sigma_i\]

Figure 1: Image of the error-free splitting
Error-Free Splitting

\[A = A^{(1)} + A^{(2)}, \quad A^{(1)}, A^{(2)} \in \mathbb{F}^{m \times n}, \]
\[A^{(2)} = A^{(2)} + A^{(3)}, \quad A^{(2)}, A^{(3)} \in \mathbb{F}^{m \times n}, \]
\[\vdots \]
\[A^{(k)} = A^{(k)} + A^{(k+1)}, \quad A^{(k)}, A^{(k+1)} \in \mathbb{F}^{m \times n}, \]

Finally, \(A^{(k+1)} \) becomes the zero matrix.
Similarly, $B^{(1)}, \ldots, B^{(k)}$ can be obtained.

$$A = \sum_{i=1}^{k} A^{(i)}, \quad B = \sum_{j=1}^{l} B^{(j)}, \quad fl(A^{(i)} B^{(j)}) = A^{(i)} B^{(j)}$$

and we have

$$AB = fl(A^{(1)} B^{(1)}) + \cdots + fl(A^{(k)} B^{(l)}).$$

Reproducible result can be obtained.
Error-Free Transformation

\[AB = \text{fl}(A^{(1)}B^{(1)}) + \cdots + \text{fl}(A^{(k)}B^{(l)}). \]

If we apply the accurate summation algorithm, we obtain the best computed result. Best means the correct rounding.

Fast Reproducible Algorithms

For A and B, if

$$A = \sum_{i=1}^{5} A^{(i)}, \quad B = \sum_{i=1}^{5} B^{(i)},$$

then 25 matrix products are required.

We introduce simplified algorithms.

(This is not correct rounding)
Fast Reproducible Algorithms

We use

\[
A = A^{(1)} + A^{(2)}, \quad B = B^{(1)} + B^{(2)},
\]

\[
AB = A^{(1)}B^{(1)} + A^{(1)}B^{(2)} + A^{(2)}B
\]

\[
= \text{fl}(A^{(1)}B^{(1)}) + A^{(1)}B^{(2)} + A^{(2)}B
\]

We only use \(\text{fl}(A^{(1)}B^{(1)}) \) such that

\[
AB \approx \text{fl}(A^{(1)}B^{(1)}).
\]
We use

\[A = A^{(1)} + A^{(2)} + A^{(3)}, \quad B = B^{(1)} + B^{(2)} + B^{(3)}, \]

\[AB = \text{fl}(A^{(1)}B^{(1)}) + \text{fl}(A^{(1)}B^{(2)}) + \text{fl}(A^{(2)}B^{(1)}) + A^{(1)}B^{(3)} + A^{(2)}B^{(2)} + A^{(3)}B. \]

We only use three matrix products such that

\[AB \approx \text{fl}(A^{(1)}B^{(1)}) + \text{fl}(A^{(1)}B^{(2)}) + \text{fl}(A^{(2)}B^{(1)}). \]
Fast Reproducible Algorithms

We use

\[A = A^{(1)} + A^{(2)} + A^{(3)} + A^{(4)}, \quad B = B^{(1)} + B^{(2)} + B^{(3)} + B^{(4)}, \]

We only use six matrix products such that

\[AB \approx \text{fl}(A^{(1)}B^{(1)}) + \text{fl}(A^{(1)}B^{(2)}) + \text{fl}(A^{(2)}B^{(1)}) \]
\[+ \text{fl}(A^{(1)}B^{(3)}) + \text{fl}(A^{(2)}B^{(2)}) + \text{fl}(A^{(3)}B^{(1)}). \]
Numerical Examples

\[A = \text{randn}(n), \quad B = \text{randn}(n) \]

Table 1: Comparison of Relative Error \((n = 10000)\)

<table>
<thead>
<tr>
<th>Methods</th>
<th>Average</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A \ast B)</td>
<td>1.0127e-14</td>
<td>2.4751e-07</td>
</tr>
<tr>
<td>1 MM</td>
<td>1.0130e-05</td>
<td>2.0688e+02</td>
</tr>
<tr>
<td>3 MMs</td>
<td>2.4390e-12</td>
<td>3.0284e-05</td>
</tr>
<tr>
<td>6 MMs</td>
<td>5.3645e-17</td>
<td>5.7411e-12</td>
</tr>
</tbody>
</table>
Single Precision (Binary32)

• A, B: all elements are in binary32 \Rightarrow binary64.

• $A = A^{(1)} + A^{(2)}$, $B = B^{(1)} + B^{(2)}$

• compute $A^{(1)}B^{(1)}$

• the result is rounded to binary32
Table 2: Comparison of Relative Error ($n = 1000$)

<table>
<thead>
<tr>
<th>Methods</th>
<th>Average</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A \times B$</td>
<td>1.8757e-06</td>
<td>5.8263e-02</td>
</tr>
<tr>
<td>1 MM</td>
<td>1.6181e-06</td>
<td>2.0905e-02</td>
</tr>
</tbody>
</table>

For matrix multiplication, computing time using binary64 is **two times slower** than that using binary32.

(There are exceptions for some GPUs)
Interval Matrix Multiplication

Reproducible algorithms for interval matrix multiplication.

\[\langle A_m, A_r \rangle, \langle B_m, B_r \rangle \]

are mid-rad interval matrices.

Then,

\[\langle A_m, A_r \rangle \langle B_m, B_r \rangle \subseteq \langle A_mB_m, |A_m|B_r + A_r(|B_m| + B_r) \rangle \]

is well-known.
Interval Matrix Multiplication

\[
(A_m, A_r) (B_m, B_r) \subseteq (A_mB_m, |A_mB_r + A_r(|B_m| + B_r))
\]

We can compute upper bounds without matrix multiplication. For \(|A| = A\) and \(|B| = B\),

\[
AB \leq \min(\text{Af e}^T, \text{eg}^T B), \quad f_i = \max_j b_{ij}, \quad g_j = \max_i a_{ij}
\]

where \(e = (1, 1, \ldots, 1)^T\).
Interval Matrix Multiplication

\[
\langle A_m, A_r \rangle \langle B_m, B_r \rangle \subseteq \langle A_m B_m, |A_m|B_r + A_r(|B_m| + B_r) \rangle
\]

\[
A_m = A_m^{(1)} + A_m^{(2)}, \quad B_m = B_m^{(1)} + B_m^{(2)}
\]

We propose the following enclosure:

\[
\langle A_m^{(1)} B_m^{(1)} + A_m^{(1)} B_m^{(2)} + A_m^{(2)} B, |A_m|B_r + A_r(|B_m| + B_r) \rangle
\]

\[
\subseteq \langle \text{fl}(A_m^{(1)} B_m^{(1)}), |A_m^{(1)}||B_m^{(2)}| + |A_m^{(2)}||B| + |A_m|B_r + A_r(|B_m| + B_r) \rangle
\]
Interval Matrix Multiplication

\[\langle A_m, A_r \rangle \langle B_m, B_r \rangle \subseteq \langle A_m B_m, |A_m| B_r + A_r (|B_m| + B_r) \rangle \]

\[A_m = A_m^{(1)} + A_m^{(2)} + A_m^{(3)}, \quad B_m = B_m^{(1)} + B_m^{(2)} + B_m^{(3)} \]

Mid-point and radius can be given by

\[\text{mid} = A_m^{(1)} B_m^{(1)} + A_m^{(1)} B_m^{(2)} + A_m^{(2)} B_m^{(1)} + A_m^{(1)} B_m^{(3)} + A_m^{(2)} B_m^{(2)} + A_m^{(3)} \]

\[\text{rad} = |A_m| B_r + A_r (|B_m| + B_r) \]
Interval Matrix Multiplication

\[\langle A_m, A_r \rangle \langle B_m, B_r \rangle \subseteq \langle A_mB_m, |A_m|B_r + A_r(|B_m| + B_r) \rangle \]

\[A_m = A_m^{(1)} + A_m^{(2)} + A_m^{(3)}, \quad B_m = B_m^{(1)} + B_m^{(2)} + B_m^{(3)} \]

Mid-point and radius can be given by

\[\text{mid} = \text{fl}(A_m^{(1)}B_m^{(1)}) + \text{fl}(A_m^{(1)}B_m^{(2)}) + \text{fl}(A_m^{(2)}B_m^{(1)}) \]

\[\text{rad} = |A_m^{(1)}||B_m^{(3)}| + |A_m^{(2)}||B_m^{(2)}| + |A_m^{(3)}||B| + |A_m|B_r + A_r(|B_m| + B_r) \]
Numerical Examples

We generate matrices for mid-point

\[A_m = \text{randn}(n), \quad B_m = \text{randn}(n) \]

and set matrices for radius as

\[A_r = c|A_m|, \quad B_r = c|B_m| \]

where \(c \) is a positive constant.
Numerical Examples

Table 3: Average of Radius \((n = 5000)\)

<table>
<thead>
<tr>
<th>Methods (\backslash) (c)</th>
<th>1e-15</th>
<th>1e-10</th>
<th>1e-05</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ogita-Oishi</td>
<td>3.35e-11</td>
<td>3.05e-06</td>
<td>3.05e-01</td>
</tr>
<tr>
<td>1 MM</td>
<td>1.13e-01</td>
<td>1.13e-01</td>
<td>4.18e-01</td>
</tr>
<tr>
<td>3 MMs</td>
<td>1.12e-07</td>
<td>3.16e-06</td>
<td>3.05e-01</td>
</tr>
<tr>
<td>6 MMs</td>
<td>3.06e-11</td>
<td>3.05e-06</td>
<td>3.05e-01</td>
</tr>
</tbody>
</table>

Conclusion

- We proposed reproducible algorithms for matrix multiplication
- This technique can be applied to interval matrix multiplication

Thank you very much for your kind attention